期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于一致性正则化的深度偏标记半监督学习方法
1
作者 祝彪 李艳 王硕 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期27-39,共13页
大部分偏标记学习方法假设所有训练样本都具有候选标记集,然而在许多现实场景下存在大量无标记样本.如何同时利用偏标记和无标记样本所隐含的信息构建学习模型,是偏标记半监督学习研究的关键问题.针对只含有少量标记样本、偏标记样本和... 大部分偏标记学习方法假设所有训练样本都具有候选标记集,然而在许多现实场景下存在大量无标记样本.如何同时利用偏标记和无标记样本所隐含的信息构建学习模型,是偏标记半监督学习研究的关键问题.针对只含有少量标记样本、偏标记样本和大量无标记样本的图像分类问题,运用一致性正则化方法和伪标记方法建立深度学习模型.对于偏标记和无标记样本,基于其弱增强的输出结果生成伪标记,且偏标记样本的伪标记限制于其候选标记集中.研究设计了新的损失函数,包含3个损失项,可以同时利用数据中的监督信息、弱监督信息和无监督信息.为了提高参与训练过程样本的可靠性,只选择高置信度伪标记的样本来计算两种增强后的输出交叉熵损失.实验结果说明,该方法(CR-SSPL)比现有半监督学习SOTA方法FlexMatch和偏标记学习代表方法具有更高的精度和稳定性,收敛速度也有明显提升. 展开更多
关键词 标记学习 半监督学习 一致性正则化 伪标记方法 图像分类 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部