针对特征分解方法在实现非等功率同步直接序列码分多址(DS-CDMA)信号伪码序列盲估计时存在的处理数据向量不能太长以及不能工作于非平稳环境中的问题,引入了一种由主分量分析实现自适应特征提取的在线无监督学习(LEAP)神经网络(NN)。首...针对特征分解方法在实现非等功率同步直接序列码分多址(DS-CDMA)信号伪码序列盲估计时存在的处理数据向量不能太长以及不能工作于非平稳环境中的问题,引入了一种由主分量分析实现自适应特征提取的在线无监督学习(LEAP)神经网络(NN)。首先将已分段的一周期DS-CDMA信号作为NN的输入信号,用NN各权值向量的符号函数代表DS-CDMA信号各用户的伪码序列,然后通过不断输入信号来反复训练权值向量直至收敛,最终DS-CDMA信号各用户的伪码序列就可以通过各权值向量的符号函数重建出来。此外,采用变步长以提高收敛速度。理论分析与仿真实验表明,LEAP NN至少可以实现-20 d B信噪比下10个用户的非等功率同步DS-CDMA伪码序列盲估计,并且比传统的Sanger NN具有更快的收敛速度。展开更多
在短码直扩信号伪码序列的估计中,当使用特征值分解(eigenvalue decomposition,EVD)算法、奇异值分解(singular value decomposition,SVD)算法和压缩投影逼近子空间跟踪(projection approximation subspace tracking with deflation,PAS...在短码直扩信号伪码序列的估计中,当使用特征值分解(eigenvalue decomposition,EVD)算法、奇异值分解(singular value decomposition,SVD)算法和压缩投影逼近子空间跟踪(projection approximation subspace tracking with deflation,PASTd)算法来估计伪码序列时,存在着当最大特征值和次大特征值相近时最大特征向量会受到干扰,进而影响伪码序列估计的问题。针对此问题,提出了一种基于正交特性的伪码序列估计算法。在已知码片速率和伪码周期的前提下,该算法首先把接收信号划分成长度为两倍码元宽度、数据重叠50%的数据段,然后用SVD估计出最大特征向量和次大特征向量,由于最大特征向量和次大特征向量是相互正交的,可以利用两者的正交特性来估计扩频序列。该算法不但能在信号失步时间未知的情况下估计伪码序列,而且仿真结果表明该算法具有稳定性高,需要的数据量少和能在低信噪比下有较好的估计性能等优点。展开更多
文摘针对特征分解方法在实现非等功率同步直接序列码分多址(DS-CDMA)信号伪码序列盲估计时存在的处理数据向量不能太长以及不能工作于非平稳环境中的问题,引入了一种由主分量分析实现自适应特征提取的在线无监督学习(LEAP)神经网络(NN)。首先将已分段的一周期DS-CDMA信号作为NN的输入信号,用NN各权值向量的符号函数代表DS-CDMA信号各用户的伪码序列,然后通过不断输入信号来反复训练权值向量直至收敛,最终DS-CDMA信号各用户的伪码序列就可以通过各权值向量的符号函数重建出来。此外,采用变步长以提高收敛速度。理论分析与仿真实验表明,LEAP NN至少可以实现-20 d B信噪比下10个用户的非等功率同步DS-CDMA伪码序列盲估计,并且比传统的Sanger NN具有更快的收敛速度。
文摘在短码直扩信号伪码序列的估计中,当使用特征值分解(eigenvalue decomposition,EVD)算法、奇异值分解(singular value decomposition,SVD)算法和压缩投影逼近子空间跟踪(projection approximation subspace tracking with deflation,PASTd)算法来估计伪码序列时,存在着当最大特征值和次大特征值相近时最大特征向量会受到干扰,进而影响伪码序列估计的问题。针对此问题,提出了一种基于正交特性的伪码序列估计算法。在已知码片速率和伪码周期的前提下,该算法首先把接收信号划分成长度为两倍码元宽度、数据重叠50%的数据段,然后用SVD估计出最大特征向量和次大特征向量,由于最大特征向量和次大特征向量是相互正交的,可以利用两者的正交特性来估计扩频序列。该算法不但能在信号失步时间未知的情况下估计伪码序列,而且仿真结果表明该算法具有稳定性高,需要的数据量少和能在低信噪比下有较好的估计性能等优点。