文摘针对含有噪声和外点的三维点云刚体配准问题,由于迭代最近点(iterative closest point,ICP)算法的配准精度较低,为此,该文提出了一种基于改进ICP算法的三维点云刚体配准方法。考虑到伪Huber损失函数对噪声和外点不敏感、鲁棒性强,首先,建立了基于伪Huber损失函数的三维点云刚体配准模型。其次,利用RGB-D点云数据中颜色信息辅助建立点云对应关系,以提高改进ICP算法中对应点匹配的准确性。最后,结合奇异值分解(singular value decomposition,SVD)和Levenberg-Marquardt(LM)的优化算法对三维点云刚体配准模型进行优化求解。实验结果表明,该文所提三维点云刚体配准方法的配准精度高,能够有效抑制噪声和外点对配准精度的影响。
文摘为了抑制采样点中粗差对数字高程模型(digital elevation model,DEM)建模的影响,以较高精度的多面函数(multi-quadric,MQ)为基函数,由改进Huber损失函数和权重惩罚项组成目标函数,发展了MQ抗差插值算法(MQ-H)。通过优化MQ-H目标函数,采样点权重计算最终转换为方程组求解。以数学曲面为研究对象,将MQ-H计算结果与传统MQ及最小绝对偏差MQ(MQ-L)进行比较,结果表明:当采样误差服从正态分布时,MQ-H计算精度与传统MQ相当,而远高于MQ-L;当采样误差服从拉普拉斯分布时,MQ-H计算精度略高于MQ-L及传统MQ;当采样点被粗差污染时,MQ-H计算精度远高于传统MQ及MQ-L。在实例分析中,以无人遥测飞艇立体像对获取的地面离散高程点为基础数据,基于MQ-H构建测区DEM,并将计算结果与传统插值算法,如反距离加权(inverse distance weighting,IDW)、普通克里金(ordinary Kriging,OK)和专业DEM插值软件ANUDEM(Australian National University DEM)进行比较,结果表明,传统插值方法在不同程度上受采样点中异常值或偶然误差影响,而MQ-H受异常值影响较小,且能准确捕捉到地形细节信息。