The variable separation approach method is very useful to solving (2+ 1 )-dimensional integrable systems. But the (1+1)-dimensional and (3+ 1 )-dimensional nonlinear systems are considered very little. In this letter,...The variable separation approach method is very useful to solving (2+ 1 )-dimensional integrable systems. But the (1+1)-dimensional and (3+ 1 )-dimensional nonlinear systems are considered very little. In this letter, we extend this method to (1+1) dimensions by taking the Redekopp system as a simple example and (3+1)-dimensional Burgers system. The exact solutions are much general because they include some arbitrary functions and the form of the (3+ 1 )-dimensional universal formula obtained from many (2+ 1 )-dimensional systems is extended.展开更多
文摘The variable separation approach method is very useful to solving (2+ 1 )-dimensional integrable systems. But the (1+1)-dimensional and (3+ 1 )-dimensional nonlinear systems are considered very little. In this letter, we extend this method to (1+1) dimensions by taking the Redekopp system as a simple example and (3+1)-dimensional Burgers system. The exact solutions are much general because they include some arbitrary functions and the form of the (3+ 1 )-dimensional universal formula obtained from many (2+ 1 )-dimensional systems is extended.