In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin...In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.展开更多
The feature selection in analogy-based software effort estimation (ASEE) is formulized as a multi-objective optimization problem. One objective is designed to maximize the effort estimation accuracy and the other ob...The feature selection in analogy-based software effort estimation (ASEE) is formulized as a multi-objective optimization problem. One objective is designed to maximize the effort estimation accuracy and the other objective is designed to minimize the number of selected features. Based on these two potential conflict objectives, a novel wrapper- based feature selection method, multi-objective feature selection for analogy-based software effort estimation (MASE), is proposed. In the empirical studies, 77 projects in Desharnais and 62 projects in Maxwell from the real world are selected as the evaluation objects and the proposed method MASE is compared with some baseline methods. Final results show that the proposed method can achieve better performance by selecting fewer features when considering MMRE (mean magnitude of relative error), MdMRE (median magnitude of relative error), PRED ( 0. 25 ), and SA ( standardized accuracy) performance metrics.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are ...The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are common-used parameter estimation methods for maximum entropy distribution. In this study, we propose to use the particle swarm optimization method as a new parameter estimation method for the maximum entropy distribution, which has the advantage to avoid deviation introduced by simplifications made in other methods. We conducted a case study to fit the hindcasted thickness of the sea ice in the Liaodong Bay of Bohai Sea using these three parameter-estimation methods for the maximum entropy distribution. All methods implemented in this study pass the K-S tests at 0.05 significant level. In terms of the average sum of deviation squares, the empirical curve fitting method provides the best fit for the original data, while the method of moment provides the worst. Among all three methods, the particle swarm optimization method predicts the largest thickness of the sea ice for a same return period. As a result, we recommend using the particle swarm optimization method for the maximum entropy distribution for offshore structures mainly influenced by the sea ice in winter, but using the empirical curve fitting method to reduce the cost in the design of temporary and economic buildings.展开更多
Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper s...Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper shows several practical cases, which indicate the method is very valid and reliable.展开更多
The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and G...The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.展开更多
基金Supported by the National Basic Research Program of China (2012CB720500)the National Natural Science Foundation of China (60974008)
文摘In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.
基金The National Natural Science Foundation of China(No.61602267,61202006)the Open Project of State Key Laboratory for Novel Software Technology at Nanjing University(No.KFKT2016B18)
文摘The feature selection in analogy-based software effort estimation (ASEE) is formulized as a multi-objective optimization problem. One objective is designed to maximize the effort estimation accuracy and the other objective is designed to minimize the number of selected features. Based on these two potential conflict objectives, a novel wrapper- based feature selection method, multi-objective feature selection for analogy-based software effort estimation (MASE), is proposed. In the empirical studies, 77 projects in Desharnais and 62 projects in Maxwell from the real world are selected as the evaluation objects and the proposed method MASE is compared with some baseline methods. Final results show that the proposed method can achieve better performance by selecting fewer features when considering MMRE (mean magnitude of relative error), MdMRE (median magnitude of relative error), PRED ( 0. 25 ), and SA ( standardized accuracy) performance metrics.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
基金supported by the National Natural Science Foundation of China (Nos. 51279186, 51479183, 51509227)the Shandong Province Natural Science Foundation, China (No. ZR2014EEQ030)the Fundamental Research Funds for the Central Universities (No. 201413003)
文摘The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are common-used parameter estimation methods for maximum entropy distribution. In this study, we propose to use the particle swarm optimization method as a new parameter estimation method for the maximum entropy distribution, which has the advantage to avoid deviation introduced by simplifications made in other methods. We conducted a case study to fit the hindcasted thickness of the sea ice in the Liaodong Bay of Bohai Sea using these three parameter-estimation methods for the maximum entropy distribution. All methods implemented in this study pass the K-S tests at 0.05 significant level. In terms of the average sum of deviation squares, the empirical curve fitting method provides the best fit for the original data, while the method of moment provides the worst. Among all three methods, the particle swarm optimization method predicts the largest thickness of the sea ice for a same return period. As a result, we recommend using the particle swarm optimization method for the maximum entropy distribution for offshore structures mainly influenced by the sea ice in winter, but using the empirical curve fitting method to reduce the cost in the design of temporary and economic buildings.
文摘Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper shows several practical cases, which indicate the method is very valid and reliable.
文摘The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.
基金supported in part by the National Basic Research Program (2007CB814906)the National Natural Science Foundation of China (10471103 and 10771158)+2 种基金Social Science Foundation of the Ministry of Education of China (Numerical methods for convertible bonds, 06JA630047)Tianjin Natural Science Foundation (07JCYBJC14300)the National Science Foundation under Grant No. EAR-0934747
文摘This article summarizes our recent work on uniform error estimates for various finite elementmethods for time-dependent advection-diffusion equations.