The existing collaborative recommendation algorithms have lower robustness against shilling attacks.With this problem in mind,in this paper we propose a robust collaborative recommendation algorithm based on k-distanc...The existing collaborative recommendation algorithms have lower robustness against shilling attacks.With this problem in mind,in this paper we propose a robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator.Firstly,we propose a k-distancebased method to compute user suspicion degree(USD).The reliable neighbor model can be constructed through incorporating the user suspicion degree into user neighbor model.The influence of attack profiles on the recommendation results is reduced through adjusting similarities among users.Then,Tukey M-estimator is introduced to construct robust matrix factorization model,which can realize the robust estimation of user feature matrix and item feature matrix and reduce the influence of attack profiles on item feature matrix.Finally,a robust collaborative recommendation algorithm is devised by combining the reliable neighbor model and robust matrix factorization model.Experimental results show that the proposed algorithm outperforms the existing methods in terms of both recommendation accuracy and robustness.展开更多
The estimation of gear selectivity is a critical issue in fishery stock assessment and management.Several methods have been developed for estimating gillnet selectivity,but they all have their limitations,such as inap...The estimation of gear selectivity is a critical issue in fishery stock assessment and management.Several methods have been developed for estimating gillnet selectivity,but they all have their limitations,such as inappropriate objective function in data fitting,lack of unique estimates due to the difficulty in finding global minima in minimization,biased estimates due to outliers,and estimations of selectivity being influenced by the predetermined selectivity functions.In this study,we develop a new algorithm that can overcome the above-mentioned problems in estimating the gillnet selectivity.The proposed algorithms include minimizing the sum of squared vertical distances between two adjacent points and minimizing the weighted sum of squared vertical distances between two adjacent points in the presence of outliers.According to the estimated gillnet selectivity curve,the selectivity function can also be determined.This study suggests that the proposed algorithm is not sensitive to outliers in selectivity data and improves on the previous methods in estimating gillnet selectivity and relative population density of fish when a gillnet is used as a sampling tool.We suggest the proposed approach be used in estimating gillnet selectivity.展开更多
基金National Natural Science Foundation of China under Grant No.61379116,Natural Science Foundation of Hebei Province under Grant No.F2015203046 and No.F2013203124,Key Program of Research on Science and Technology of Higher Education Institutions of Hebei Province under Grant No.ZH2012028
文摘The existing collaborative recommendation algorithms have lower robustness against shilling attacks.With this problem in mind,in this paper we propose a robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator.Firstly,we propose a k-distancebased method to compute user suspicion degree(USD).The reliable neighbor model can be constructed through incorporating the user suspicion degree into user neighbor model.The influence of attack profiles on the recommendation results is reduced through adjusting similarities among users.Then,Tukey M-estimator is introduced to construct robust matrix factorization model,which can realize the robust estimation of user feature matrix and item feature matrix and reduce the influence of attack profiles on item feature matrix.Finally,a robust collaborative recommendation algorithm is devised by combining the reliable neighbor model and robust matrix factorization model.Experimental results show that the proposed algorithm outperforms the existing methods in terms of both recommendation accuracy and robustness.
基金Supported by National Key Technology R&D Program of China(No.2006BAD09A05)
文摘The estimation of gear selectivity is a critical issue in fishery stock assessment and management.Several methods have been developed for estimating gillnet selectivity,but they all have their limitations,such as inappropriate objective function in data fitting,lack of unique estimates due to the difficulty in finding global minima in minimization,biased estimates due to outliers,and estimations of selectivity being influenced by the predetermined selectivity functions.In this study,we develop a new algorithm that can overcome the above-mentioned problems in estimating the gillnet selectivity.The proposed algorithms include minimizing the sum of squared vertical distances between two adjacent points and minimizing the weighted sum of squared vertical distances between two adjacent points in the presence of outliers.According to the estimated gillnet selectivity curve,the selectivity function can also be determined.This study suggests that the proposed algorithm is not sensitive to outliers in selectivity data and improves on the previous methods in estimating gillnet selectivity and relative population density of fish when a gillnet is used as a sampling tool.We suggest the proposed approach be used in estimating gillnet selectivity.