To simulate the dynamic process of total nitrogen(TN) in seas, numerical modelling combined with the adjoint method is implemented in this study. Because nonpoint source terms(ST) and initial values(IV) of TN are esse...To simulate the dynamic process of total nitrogen(TN) in seas, numerical modelling combined with the adjoint method is implemented in this study. Because nonpoint source terms(ST) and initial values(IV) of TN are essential but difficult to determine, the adjoint method was applied to a numerical model, and the ST and IV terms of TN were inverted via routine monitoring data in the Bohai Sea. In twin experiments, the adjoint method was capable of inverting the prescribed spatio-temporally distributed ST and the spatial distributed IV. In practical experiments, the results demonstrated that the simulation precision with ST inversion was higher than that with IV inversion and was accurate with joint initial values and source term(IST) inversion. This result indicates that nonpoint source TN is essential for the simulation of TN concentration. Furthermore, the simulated results indicate that the pollution in three bays of the Bohai Sea is rather severe. The model in this study is not specific to the Bohai Sea and can be generalized to other areas, such as the Beibu Gulf. These findings may assist in the development of cost-effective controls for accidental or planned industrial pollutant releases into coastal waters.展开更多
The problem for determining the exchange rate function of 2D CCPF model by measurements on the partial boundary is considered and solved as one PDE-constraint optimization problem. The optimal variant is the minimum o...The problem for determining the exchange rate function of 2D CCPF model by measurements on the partial boundary is considered and solved as one PDE-constraint optimization problem. The optimal variant is the minimum of a cost functional that quantifies the difference between the measurements and the exact solutions. Gradientbased algorithm is used to solve this optimization problem. At each step, the derivative of the cost functional with respect to the exchange rate function is calculated and only one forward solution and one adjoint solution are needed. One method based on the adjoint equation is developed and implemented. Numerical examples show the efficiency of the adjoint method.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371496 & No.41606006)the National Key Research and Development Plan (Grant No. 2016YFC1402304)+1 种基金the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014DM017)the Natural Science Foundation of Zhejiang Province (Grant No. LY15D060001)
文摘To simulate the dynamic process of total nitrogen(TN) in seas, numerical modelling combined with the adjoint method is implemented in this study. Because nonpoint source terms(ST) and initial values(IV) of TN are essential but difficult to determine, the adjoint method was applied to a numerical model, and the ST and IV terms of TN were inverted via routine monitoring data in the Bohai Sea. In twin experiments, the adjoint method was capable of inverting the prescribed spatio-temporally distributed ST and the spatial distributed IV. In practical experiments, the results demonstrated that the simulation precision with ST inversion was higher than that with IV inversion and was accurate with joint initial values and source term(IST) inversion. This result indicates that nonpoint source TN is essential for the simulation of TN concentration. Furthermore, the simulated results indicate that the pollution in three bays of the Bohai Sea is rather severe. The model in this study is not specific to the Bohai Sea and can be generalized to other areas, such as the Beibu Gulf. These findings may assist in the development of cost-effective controls for accidental or planned industrial pollutant releases into coastal waters.
基金supported by the Key Project National Science Foundation of China(No.91130004)the Natural Science Foundation of China(Nos.11171077,11331004)the National Talents Training Base for Basic Research and Teaching of Natural Science of China(No.J1103105)
文摘The problem for determining the exchange rate function of 2D CCPF model by measurements on the partial boundary is considered and solved as one PDE-constraint optimization problem. The optimal variant is the minimum of a cost functional that quantifies the difference between the measurements and the exact solutions. Gradientbased algorithm is used to solve this optimization problem. At each step, the derivative of the cost functional with respect to the exchange rate function is calculated and only one forward solution and one adjoint solution are needed. One method based on the adjoint equation is developed and implemented. Numerical examples show the efficiency of the adjoint method.