A set of acoustic optimization design methods is established by combining the flow field deterioration theory and the acoustic analogy theory,and applied to the acoustic optimization design of high-speed train snow-pl...A set of acoustic optimization design methods is established by combining the flow field deterioration theory and the acoustic analogy theory,and applied to the acoustic optimization design of high-speed train snow-plough.The results show that the streamline bodies of the head/tail car are the most important sound sources,respectively,accounting for 23.7%and 33.7%of the total sound energy.Compared with the streamline body of tail head,the streamline body of head car is more biased towards high frequency for the sound source energy.The A-weighted radiated noise of the train body is characterized by broadband sound(mainly in the range of 1-4 kHz)and peak features(especially at 2 kHz).The snow-plough with the maximum expansion length can mitigate the strong peak effect of the sound at 2 kHz,reduce the total sound energy,and show the best acoustic radiation performance in the four schemes.The numerical computation model was checked by the wind tunnel test results.展开更多
Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time- of-flight spectrometer, and stud...Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time- of-flight spectrometer, and studied with infrared photodissociation spectroscopy. For each complex, a sharp band in the CO stretching frequency region is observed, which confirms the formation of the OTi+CO(CO2)~_l oxide-carbonyl species. Small OTi+CO(CO2)~_1 complexes (n_〈5) exhibit CO stretching and antisymmetric CO2 stretching vibrational bands that are blue-shifted from those of free CO and CO2. The experimental observations indicate that the coordination number of CO and CO2 molecules around TiO+ is five. Evidence is also observed for the presence of another electrostatic bonding Ti+(CO2)2 structural isomer for the Ti+(CO2)2Ar complex, which is characterized to have a bent OCO-Ti+-OCO structure stabilized by argon coordination.展开更多
In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SF...In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SFs). Secondly, for two typical iterative algorithms,such as soft cancellation(SCAN) and belief propagation(BP) decoding, genie-aided decoders are proposed as the ideal reference of the practical decoding. Guided by this optimization framework, the optimal SFs of SCAN or BP decoders are obtained. The bit error rate performance of turbo-polar code with the optimal SFs can achieve 0.3 dB or 0.7 dB performance gains over the standard SCAN or BP decoding respectively.展开更多
Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable D...Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.展开更多
The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the ab...The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.展开更多
To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA)...To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA) cellular networks, a cross-layer design framework that jointly selects the Transmission Policy (TP) for SVC video frames, assigns OFDMA subcarriers, and allocates power for each subcarrier is proposed. We apply the dual decomposition method to the problem, and obtain a TP selection subproblem for each SVC video adaptation and a resource allocation subproblem of Joint Subcarrier, Relay and Power Allocation (JSRPA). A second level of dual decomposition is used to divide the JSRPA problem into independent subcarrier subproblems. The proposed Crosslayer Trade-off Optimization (CTO) algorithm is sub-distributed with significantly low complexity. A performance evaluation with typical SVC video traces demonstrates that the proposed algorithm is able to converge and efficiently achieve the optimal trade-off between the video quality and energy consumption at the MSs for uplink SVC streaming.展开更多
Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good...Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good performance. Here, we present a direct preparation of porous silicon nanoparticles as a new kind of nanostructured silicon using a novel two-step approach combining controlled boron doping and facile electroless etching. The porous silicon nanoparticles have been successfully used as high performance lithium-ion battery anodes, with capacities around 1,400 mA.h/g achieved at a current rate of 1 A/g, and 1,000 mA.h/g achieved at 2 A/g, and stable operation when combined with reduced graphene oxide and tested over up to 200 cycles. We attribute the overall good performance to the combination of porous silicon that can accommodate large volume change during cycling and provide large surface area accessible to electrolyte, and reduced graphene oxide that can serve as an elastic and electrically conductive matrix for the porous silicon nanoparticles.展开更多
In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our s...In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our studies on three vital aspects: Stretchability of hybrid film electrodes, the interface between different components, and the integrated performance in stretchability and electrochemistry of supercapacitors based on single-walled carbon nanotube/ polyaniline (SWCNT/PANI) composite films on pre-elongated elastomers. Owing to the moderate porosity, the buckled hybrid film avoids the cracking which occurs in conventional stretchable hybrid electrodes, and both a high specific capacitance of 435 F.g-1 and a high strain tolerance of 140% have been achieved. The good SWCNT/PANI interfacial coupling and the reinforced solid electrolyte penetration structure enable the integrated pseudocapacitors to have stretch- resistant interfaces between different units and maintain a high performance under a stretching of 120% elongation, even after 1,000 cyclic elongations.展开更多
基金Project(ANCL20200302)supported by the Key Laboratory of Aerodynamic Noise ControlProject(JZ2020HGQA0213)supported by the Fundamental Research Funds for the Central Universities,China+2 种基金Project(202010359084)supported by National Training Program of Innovation and Entrepreneurship for Undergraduates,ChinaProject(P2019-J008)supported by the Research on Key Technology of New Generation Fuxing EMU Platform,ChinaProject(2017YFB1201103-02)supported by National key R&D Plan,China。
文摘A set of acoustic optimization design methods is established by combining the flow field deterioration theory and the acoustic analogy theory,and applied to the acoustic optimization design of high-speed train snow-plough.The results show that the streamline bodies of the head/tail car are the most important sound sources,respectively,accounting for 23.7%and 33.7%of the total sound energy.Compared with the streamline body of tail head,the streamline body of head car is more biased towards high frequency for the sound source energy.The A-weighted radiated noise of the train body is characterized by broadband sound(mainly in the range of 1-4 kHz)and peak features(especially at 2 kHz).The snow-plough with the maximum expansion length can mitigate the strong peak effect of the sound at 2 kHz,reduce the total sound energy,and show the best acoustic radiation performance in the four schemes.The numerical computation model was checked by the wind tunnel test results.
文摘Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time- of-flight spectrometer, and studied with infrared photodissociation spectroscopy. For each complex, a sharp band in the CO stretching frequency region is observed, which confirms the formation of the OTi+CO(CO2)~_l oxide-carbonyl species. Small OTi+CO(CO2)~_1 complexes (n_〈5) exhibit CO stretching and antisymmetric CO2 stretching vibrational bands that are blue-shifted from those of free CO and CO2. The experimental observations indicate that the coordination number of CO and CO2 molecules around TiO+ is five. Evidence is also observed for the presence of another electrostatic bonding Ti+(CO2)2 structural isomer for the Ti+(CO2)2Ar complex, which is characterized to have a bent OCO-Ti+-OCO structure stabilized by argon coordination.
基金supported by the National Natural Science Foundation of China(No.61671080)the National Natural Science Foundation of China(No.61771066)Nokia Beijing Bell Lab
文摘In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SFs). Secondly, for two typical iterative algorithms,such as soft cancellation(SCAN) and belief propagation(BP) decoding, genie-aided decoders are proposed as the ideal reference of the practical decoding. Guided by this optimization framework, the optimal SFs of SCAN or BP decoders are obtained. The bit error rate performance of turbo-polar code with the optimal SFs can achieve 0.3 dB or 0.7 dB performance gains over the standard SCAN or BP decoding respectively.
基金National Natural Science Foundation of China (No. 70971020)
文摘Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.
文摘The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.
基金partially supported by the National Natural Science Foundation of China under Grants No. 610202380, No. 60932007Major Program of National Natural Science Foundation of China under Grant No. 60932007+2 种基金Tianjin Research Program of Application Foundation and Advanced Technology under Grant No. 12JCQNJC00300Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20110032120029the Innovation Foundation of Tianjin University
文摘To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA) cellular networks, a cross-layer design framework that jointly selects the Transmission Policy (TP) for SVC video frames, assigns OFDMA subcarriers, and allocates power for each subcarrier is proposed. We apply the dual decomposition method to the problem, and obtain a TP selection subproblem for each SVC video adaptation and a resource allocation subproblem of Joint Subcarrier, Relay and Power Allocation (JSRPA). A second level of dual decomposition is used to divide the JSRPA problem into independent subcarrier subproblems. The proposed Crosslayer Trade-off Optimization (CTO) algorithm is sub-distributed with significantly low complexity. A performance evaluation with typical SVC video traces demonstrates that the proposed algorithm is able to converge and efficiently achieve the optimal trade-off between the video quality and energy consumption at the MSs for uplink SVC streaming.
文摘Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good performance. Here, we present a direct preparation of porous silicon nanoparticles as a new kind of nanostructured silicon using a novel two-step approach combining controlled boron doping and facile electroless etching. The porous silicon nanoparticles have been successfully used as high performance lithium-ion battery anodes, with capacities around 1,400 mA.h/g achieved at a current rate of 1 A/g, and 1,000 mA.h/g achieved at 2 A/g, and stable operation when combined with reduced graphene oxide and tested over up to 200 cycles. We attribute the overall good performance to the combination of porous silicon that can accommodate large volume change during cycling and provide large surface area accessible to electrolyte, and reduced graphene oxide that can serve as an elastic and electrically conductive matrix for the porous silicon nanoparticles.
文摘In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our studies on three vital aspects: Stretchability of hybrid film electrodes, the interface between different components, and the integrated performance in stretchability and electrochemistry of supercapacitors based on single-walled carbon nanotube/ polyaniline (SWCNT/PANI) composite films on pre-elongated elastomers. Owing to the moderate porosity, the buckled hybrid film avoids the cracking which occurs in conventional stretchable hybrid electrodes, and both a high specific capacitance of 435 F.g-1 and a high strain tolerance of 140% have been achieved. The good SWCNT/PANI interfacial coupling and the reinforced solid electrolyte penetration structure enable the integrated pseudocapacitors to have stretch- resistant interfaces between different units and maintain a high performance under a stretching of 120% elongation, even after 1,000 cyclic elongations.