Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varietie...Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.展开更多
The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to as...The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system behavior in failure condition. The work analyses the response of a redundant secondary flight control hydraulic servo-mechanism equipped with some proper equalization devices, when some of the most probable and representative failures are present. It must be noted that the redundancy layout, designed in order to assure the necessary safety level even in failure conditions, may behave improperly during normal operations, if the system architecture is unsuitable, when manufacturing defects are present. The improper behavior, generally consisting of force fighting or speed fighting caused by different offsets or asymmetries between the two sections of the system, may be usually overcome by means of a suitable equalization device. Therefore, the system behavior during and following the failure transient greatly depends on both its redundancy architecture and related equalization device. The above mentioned problems have been studied by means of an appropriate physical-mathematical model of a typical electro-hydraulic servo-mechanism prepared to the purpose, performing a certain number of simulations of representative actuations in which different types of failures are accurately modeled. In the opinion of the authors, this paper concerns a topic quite neglected but important in the technical literature. At the best of the authors' knowledge, no specific scientific work in this field is available, excepting some industrial technical reports.展开更多
文摘Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.
文摘The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system behavior in failure condition. The work analyses the response of a redundant secondary flight control hydraulic servo-mechanism equipped with some proper equalization devices, when some of the most probable and representative failures are present. It must be noted that the redundancy layout, designed in order to assure the necessary safety level even in failure conditions, may behave improperly during normal operations, if the system architecture is unsuitable, when manufacturing defects are present. The improper behavior, generally consisting of force fighting or speed fighting caused by different offsets or asymmetries between the two sections of the system, may be usually overcome by means of a suitable equalization device. Therefore, the system behavior during and following the failure transient greatly depends on both its redundancy architecture and related equalization device. The above mentioned problems have been studied by means of an appropriate physical-mathematical model of a typical electro-hydraulic servo-mechanism prepared to the purpose, performing a certain number of simulations of representative actuations in which different types of failures are accurately modeled. In the opinion of the authors, this paper concerns a topic quite neglected but important in the technical literature. At the best of the authors' knowledge, no specific scientific work in this field is available, excepting some industrial technical reports.