A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufac-turing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to...A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufac-turing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to satisfy different processing needs. The scanning system is composed of galvanometer scanning mirrors and F-θ lens. And the flying optical system is driven by two servo motors. This paper presents the software and hardware design of the laser die-cutting system, the difference between the two optical paths, as well as the relationship among the cutting speed, thickness of wrapping paper and laser power. The cutting speed and thickness of wrapping paper are linearly increased by the incremental laser power, while the cutting speed is hyperbolically decreased by the incremental thickness of wrapping paper when the laser power is constant. The amount of incision is reduced by 20% and the processing time by 40% when tested by a low power RF CO2 laser die-cutting system using the optimized program. This tech- nique is also used for the reference of other rapid laser processing systems.展开更多
Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing t...Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.展开更多
基金Supported by by Major State Basic Research Development Program of China ("973" Program, No. 2010CB327800)
文摘A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufac-turing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to satisfy different processing needs. The scanning system is composed of galvanometer scanning mirrors and F-θ lens. And the flying optical system is driven by two servo motors. This paper presents the software and hardware design of the laser die-cutting system, the difference between the two optical paths, as well as the relationship among the cutting speed, thickness of wrapping paper and laser power. The cutting speed and thickness of wrapping paper are linearly increased by the incremental laser power, while the cutting speed is hyperbolically decreased by the incremental thickness of wrapping paper when the laser power is constant. The amount of incision is reduced by 20% and the processing time by 40% when tested by a low power RF CO2 laser die-cutting system using the optimized program. This tech- nique is also used for the reference of other rapid laser processing systems.
基金Funded by the Natural Science Foundation of Hubei Province (No. 2004AA101E04)
文摘Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.