In this paper, the quantum entanglement between a single mode binomial field and a cascade three-level atom is calculated mechanically without the rotating wave approximation. The numerical results indicate that the q...In this paper, the quantum entanglement between a single mode binomial field and a cascade three-level atom is calculated mechanically without the rotating wave approximation. The numerical results indicate that the quantum entanglement at the first few periods is reduced notably due to the fact that the atom is initially in the superposition state. With increasing field parameter 17, the period of the entanglement evolution becomes obvious and the quantum decoherence phenomenon emerges in a short time.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 1097602/A06)
文摘In this paper, the quantum entanglement between a single mode binomial field and a cascade three-level atom is calculated mechanically without the rotating wave approximation. The numerical results indicate that the quantum entanglement at the first few periods is reduced notably due to the fact that the atom is initially in the superposition state. With increasing field parameter 17, the period of the entanglement evolution becomes obvious and the quantum decoherence phenomenon emerges in a short time.