Speckle degrades severely the quality of medical B-scan ultrasonic images, especiallyit blurs edges and details of images. An adaptive speckle suppression and edge enhancementmethod based on Nakagami distribution is p...Speckle degrades severely the quality of medical B-scan ultrasonic images, especiallyit blurs edges and details of images. An adaptive speckle suppression and edge enhancementmethod based on Nakagami distribution is presented. The statistics of log-compressed echo im-ages is derived for Nakagami distribution. An adaptive filter based on local statistical propertyof speckle is designed. The stick technique that utilizes sticks with different sizes and variousorientations is applied to locally approximate certain linear features of image. The local regionis a stick instead of a usual window, the orientation of sticks is decided by hypothesis test op-timizing method and the length of sticks is obtained by region growing technique. Performanceof the new method has been tested on the phantom and ultrasound images of pig muscle andechocardiographic. The results show that the technique effectively reduces the speckle noise whilepreserving and enhancing the tissue edge and resolvable details.展开更多
文摘Speckle degrades severely the quality of medical B-scan ultrasonic images, especiallyit blurs edges and details of images. An adaptive speckle suppression and edge enhancementmethod based on Nakagami distribution is presented. The statistics of log-compressed echo im-ages is derived for Nakagami distribution. An adaptive filter based on local statistical propertyof speckle is designed. The stick technique that utilizes sticks with different sizes and variousorientations is applied to locally approximate certain linear features of image. The local regionis a stick instead of a usual window, the orientation of sticks is decided by hypothesis test op-timizing method and the length of sticks is obtained by region growing technique. Performanceof the new method has been tested on the phantom and ultrasound images of pig muscle andechocardiographic. The results show that the technique effectively reduces the speckle noise whilepreserving and enhancing the tissue edge and resolvable details.