期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GFCC和能量算子倒谱的语种识别 被引量:3
1
作者 刘晶 邵玉斌 +1 位作者 龙华 李一民 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期254-261,共8页
为了提高低信噪比下语种识别的准确率,引入一种新的特征提取融合方法.在前端加入有声段检测,并基于人耳听觉感知模型提取伽玛通频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)特征,通过主成分分析对特征进行压缩、降噪,... 为了提高低信噪比下语种识别的准确率,引入一种新的特征提取融合方法.在前端加入有声段检测,并基于人耳听觉感知模型提取伽玛通频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)特征,通过主成分分析对特征进行压缩、降噪,融合每个有声段的Teager能量算子倒谱参数,通过高斯混合通用背景模型进行语种识别验证.实验结果表明,在信噪比为-5~0 dB时,相对于基于对数梅尔尺度滤波器组能量特征方法,融合特征集方法对5种语言的识别率,分别提升了23.7%~34.0%,其他信噪比等级下识别率也有明显的提升. 展开更多
关键词 语种识别 伽玛通频率倒谱系数 有声无声段检测 Teager能量算子谱参 主成分分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部