期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
环上的Hopf稠密伽罗瓦扩张
1
作者 何济位 胡海刚 《数学杂志》 2020年第2期175-184,共10页
给定交换整环R,以及Hopf R-代数H,且H是一个有限生成的自由R-模.设A是一个R-代数,并且A是H-余模代数.如果自然映射β:A■AcoH A→A■RH的余核是商有限的,则称A/AcoH是一个Hopf稠密伽罗瓦扩张.它是域上Hopf稠密伽罗瓦扩张的推广.本文证明... 给定交换整环R,以及Hopf R-代数H,且H是一个有限生成的自由R-模.设A是一个R-代数,并且A是H-余模代数.如果自然映射β:A■AcoH A→A■RH的余核是商有限的,则称A/AcoH是一个Hopf稠密伽罗瓦扩张.它是域上Hopf稠密伽罗瓦扩张的推广.本文证明了R上的Hopf稠密伽罗瓦扩张隐含了一个弱化的Auslander定理.此外,假设A是几乎可交换代数,且gr(A)是一个整环.如果A/AcoH是Hopf稠密伽罗瓦扩张,且自然映射β是严格的,本文证明了在此情形下,H在一个包含R的代数闭域上对偶于一个有限群代数. 展开更多
关键词 Hopf稠密伽罗瓦扩张 局域化 商范畴 滤过代数
下载PDF
弱Doi-Hopf模的彷射准则(英文)
2
作者 王勇 张良云 《南京大学学报(数学半年刊)》 CAS 2012年第2期115-125,共11页
在本文中,基于全积分和Hopf伽罗瓦扩张理论,我们主要研究了弱Doi-Hopf模的彷射准则.
关键词 弱HOPF代数 全积分 弱余模代数 伽罗瓦扩张
下载PDF
半线性群的子群结构
3
作者 金永容 夏鸣 《淮北煤师院学报(自然科学版)》 2001年第1期65-67,共3页
设 K为域, F为其素子域, V为 K上 n维线性空间,记 GLn(V)为 V上一般线性群。以 Ln(V)表示 V上全体可逆半线性变换全体组成的群。本文给出中间群 GLn(V) XΓ Ln(V)与中间域 F■ E■ K的对应关系。
关键词 半线性群 一般线性群 自同构群 伽罗瓦扩张 半线性变换 中间域 子群结构
下载PDF
On exceptional pq-groups 被引量:1
4
作者 BROWKIN Jerzy XU KeJian 《Science China Mathematics》 SCIE 2012年第10期2081-2093,共13页
A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of... A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of F does not appear.In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q,which have unique subgroups of orders p and q. 展开更多
关键词 Brauer-Kuroda relation exceptional group pq-group
原文传递
On Galois Extension of Hopf Algebras
5
作者 Guohua LIU Shenglin ZHU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第1期65-70,共6页
Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a s... Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a sub-Hopf algebra of A, then A is itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras. 展开更多
关键词 Hopf algebra Galois extension
原文传递
Periods of polynomials over a Galois ring
6
作者 ZHANG XiaoLei HU Lei 《Science China Mathematics》 SCIE 2013年第9期1761-1772,共12页
The period of a monic polynomial over an arbitrary Galois ring GR(pe,d) is theoretically determined by using its classical factorization and Galois extensions of rings. For a polynomial f(x) the modulo p remainder of ... The period of a monic polynomial over an arbitrary Galois ring GR(pe,d) is theoretically determined by using its classical factorization and Galois extensions of rings. For a polynomial f(x) the modulo p remainder of which is a power of an irreducible polynomial over the residue field of the Galois ring, the period of f(x) is characterized by the periods of the irreducible polynomial and an associated polynomial of the form (x-1)m+pg(x). Further results on the periods of such associated polynomials are obtained, in particular, their periods are proved to achieve an upper bound value in most cases. As a consequence, the period of a monic polynomial over GR(pe,d) is equal to pe-1 times the period of its modulo p remainder polynomial with a probability close to 1, and an expression of this probability is given. 展开更多
关键词 period of polynomial Galois ring SEQUENCE
原文传递
On Hopf Galois Extension of Separable Algebras
7
作者 Yu LU Shenglin ZHU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第4期999-1018,共20页
In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The... In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence. 展开更多
关键词 Semisimple Hopf algebra Hopf Galois extension Separable algebra Galois connection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部