将隐藏信息检测与图像内容分析相结合是当前提高图像隐写分析性能的一个新方向。与基于图像整体内容的检测方法不同,该文分析了最低有效位(Least Significant Bit LSB)匹配隐写对图像子区域统计特性的影响,提出一种新的联合判决检测方...将隐藏信息检测与图像内容分析相结合是当前提高图像隐写分析性能的一个新方向。与基于图像整体内容的检测方法不同,该文分析了最低有效位(Least Significant Bit LSB)匹配隐写对图像子区域统计特性的影响,提出一种新的联合判决检测方法。首先依据图像内容复杂度将整体图像分割为若干类子区域,其次采用两组不同的滤波器分类提取各子区域像素序列直方图频谱特征,之后用各类子区域特征分别训练Bayes分类器以获得其权重,最后对待测图像的每一个子区域进行分类检测,并将结果加权融合得到最终判决。实验结果表明,该方法对LSB匹配隐写的检测性能优于现有典型方法。展开更多
文摘将隐藏信息检测与图像内容分析相结合是当前提高图像隐写分析性能的一个新方向。与基于图像整体内容的检测方法不同,该文分析了最低有效位(Least Significant Bit LSB)匹配隐写对图像子区域统计特性的影响,提出一种新的联合判决检测方法。首先依据图像内容复杂度将整体图像分割为若干类子区域,其次采用两组不同的滤波器分类提取各子区域像素序列直方图频谱特征,之后用各类子区域特征分别训练Bayes分类器以获得其权重,最后对待测图像的每一个子区域进行分类检测,并将结果加权融合得到最终判决。实验结果表明,该方法对LSB匹配隐写的检测性能优于现有典型方法。