In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
Gravity and magnetic exploration areas are usually irregular,and there is some data defi ciency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improv...Gravity and magnetic exploration areas are usually irregular,and there is some data defi ciency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improved processing precision,the data need to be edge-padded to the length required by the fast Fourier transform algorithm.For conventional vertical derivative conversion of potential fi eld data(PFD),only vertical derivative conversion is considered,or interpolation,border padding,and vertical derivative conversion are executed independently.In this paper,these three steps are considered uniformly,and a vertical derivative conversion method for irregular-range PFD based on an improved projection onto convex sets method is proposed.The cutoff wavenumber of the filter used in the proposed method is determined by fractal model fi tting of the radial average power spectrum(RAPS)of the potential fi eld.Theoretical gravity models and real aeromagnetic data show the following:(1)The fitting of the RAPS with a fractal model can separate useful signals and noise reasonably.(2)The proposed iterative method has a clear physical sense,and its interpolation,border padding error,and running time are much smaller than those of the conventional kriging and minimum curvature methods.展开更多
We propose a scheme to implement a two-qubit conditional quantum phase gate via a single mode cavity and a cascade four-level atom assisted by a classical laser. The quantum information is encoded.on the Flock states ...We propose a scheme to implement a two-qubit conditional quantum phase gate via a single mode cavity and a cascade four-level atom assisted by a classical laser. The quantum information is encoded.on the Flock states of the cavity mode and the two metastable ground states of the atom. Even under the condition of systematic dissipations, this scheme can also be realized with fidelity of 98.6% and success probability of 0.767.展开更多
The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual...The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual's Willingness To Pay according to geographical location. Within this framework, an estimator (of type Nadaraya-Watson) is proposed for the regression of the variable related to geolocation. The specific characteristics of the location variable lead us to a more general regression model than the traditional models. Results are established for convergence of our estimator.展开更多
Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper.Several efficient and energy stable time discretization schemes for the coupled nonlinear...Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper.Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed,and are shown to satisfy discrete energy laws which are analogous to the continuous energy laws.展开更多
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41804136, 41774156, 61773389)the Young Talent Fund of University Association for Science and Technology in Shaanxi,China (Grant No.20180702)
文摘Gravity and magnetic exploration areas are usually irregular,and there is some data defi ciency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improved processing precision,the data need to be edge-padded to the length required by the fast Fourier transform algorithm.For conventional vertical derivative conversion of potential fi eld data(PFD),only vertical derivative conversion is considered,or interpolation,border padding,and vertical derivative conversion are executed independently.In this paper,these three steps are considered uniformly,and a vertical derivative conversion method for irregular-range PFD based on an improved projection onto convex sets method is proposed.The cutoff wavenumber of the filter used in the proposed method is determined by fractal model fi tting of the radial average power spectrum(RAPS)of the potential fi eld.Theoretical gravity models and real aeromagnetic data show the following:(1)The fitting of the RAPS with a fractal model can separate useful signals and noise reasonably.(2)The proposed iterative method has a clear physical sense,and its interpolation,border padding error,and running time are much smaller than those of the conventional kriging and minimum curvature methods.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374025
文摘We propose a scheme to implement a two-qubit conditional quantum phase gate via a single mode cavity and a cascade four-level atom assisted by a classical laser. The quantum information is encoded.on the Flock states of the cavity mode and the two metastable ground states of the atom. Even under the condition of systematic dissipations, this scheme can also be realized with fidelity of 98.6% and success probability of 0.767.
文摘The Contingent Valuation Method is used to evaluate individual preferences for a change concerning a public non-market resource or property. The objective is to build a nonparametric forecasting model of an individual's Willingness To Pay according to geographical location. Within this framework, an estimator (of type Nadaraya-Watson) is proposed for the regression of the variable related to geolocation. The specific characteristics of the location variable lead us to a more general regression model than the traditional models. Results are established for convergence of our estimator.
基金supported by the National Science Foundation(No. DMS-0915066)
文摘Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper.Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed,and are shown to satisfy discrete energy laws which are analogous to the continuous energy laws.