Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculat...Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).展开更多
Ontogeny and metamorphic. development of female reproductive organs in Ephedra sinica Stapf were surveyed. At the end of April, female cones began to initialize from the vegetative buds. Pollination occurred in mid-Ma...Ontogeny and metamorphic. development of female reproductive organs in Ephedra sinica Stapf were surveyed. At the end of April, female cones began to initialize from the vegetative buds. Pollination occurred in mid-May and seeds matured at the beginning of July. The ontogenetic pattern of female reproductive organs of E. sin ca is basically similar to that of E. distachya L. The foliar nature of the outer envelope of the ovule in Ephedra is corroborated. Reduction of ovule number as a tendency of speciation in the genus is substantiated by the occurrence of tri-ovulate cones coupled with comprehensive characters of the genus. The metamorphic patterns as well as the leaf nature of the outer envelope indicate that female cones of Ephedra are compound while the female reproductive units of the ovulate cone have been reduced from secondary reproductive shoots similar to those of cordaites by phylogenetic transformation, fusion and reduction. Each fertile bract together with its axillary female reproductive unit composed the Bract Scale and Seed Scale Complex of Ephedra.展开更多
Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subje...Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.展开更多
Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregatio...Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregation or coalescence.A top‐down strategy is used to synthesize atomically dispersed metal catalysts,based on supported Ag nanoparticles.The changes of the geometric and electronic structures of the Ag atoms during the top‐down process are studied using the in situ synchrotron X‐ray diffraction technique,ex situ X‐ray absorption spectroscopy,and transmission electron microscopy.The experimental results,coupled with the density functional theory calculations,demonstrate that the electronic perturbation of the Ag frontier orbitals,induced by the Ag‐O interactions at the perimeter of the metal‐support interface,is the driving force of the top‐down process.The top‐down synthesis has two important functions:to increase the number of catalytic active sites and to facilitate the study of complex reaction mechanisms(e.g.,formaldehyde oxidation)by developing single‐site model catalysts.展开更多
Properties of the triaxial superdeformed (TSD) bands of odd-A Lu isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5) (...Properties of the triaxial superdeformed (TSD) bands of odd-A Lu isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia and the spin of the TSD bands in odd-A Lu isotopes are obtained. The calculation shows that the competition between the pairing and anti-pairing effects exists in these TSD bands. Meanwhile, the SU(3) symmetry in TSD bands are broken more seriously than in superdeformed (SD) bands.展开更多
Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increa...Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.展开更多
The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the pa...The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.展开更多
Understanding the dynamic evolution of active sites of supported metal catalysts during catalysis is fundamentally important for improving its performance,which attracts tremendous research interests in the past decad...Understanding the dynamic evolution of active sites of supported metal catalysts during catalysis is fundamentally important for improving its performance,which attracts tremendous research interests in the past decades.There are two main surficial structures for metal catalysts:terrace sites and step sites,which exhibit catalytic activity discrepancy during catalysis.Herein,by using in situ transmission electron microscopy and in situ Fourier transform infrared spectroscopy(FTIR),the transformation between surface terrace and step sites of Pt-TiO_(2) catalysts was studied under CO and O_(2) environments.We found that the{111}step sites tend to form at{111}terrace under O_(2) environment,while these step sites prefer to transform into terrace under CO environment at elevated temperature.Meanwhile,quantitative ratios of terrace/step sites were obtained by in situ FTIR.It was found that this transformation between terrace sites and step sites was reversible during gas treatment cycling of CO and O_(2).The selective adsorption of O_(2) and CO species at different sites,which stabilized the step/terrace sites,was found to serve as the driving force for active sites transition by density functional theory calculations.Inspired by the in situ results,an enhanced catalytic activity of Pt-TiO_(2) catalysts was successfully achieved through tuning surface-active sites by gas treatments.展开更多
Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were disp...Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water, ethanol and KCI. The potentials generated from these samples were measured by a voltmeter. Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes, and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors. The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors. This property of MWCNTs can advantage their application to nanoscale sensors, detectors and power cells.展开更多
Increment of mobile cloud video motivates mobile users to utilize cloud storage service to address their demands, cloud storage provider always furnish a location-independent platform for managing user's data. Howeve...Increment of mobile cloud video motivates mobile users to utilize cloud storage service to address their demands, cloud storage provider always furnish a location-independent platform for managing user's data. However, mobile users wonder if their cloud video data leakage or dynamic migration to illegal service providers. In this paper, we design a novel provable data possession protocol based on data geographic location attribute, which allows data owner to auditing the integrity of their video data, which put forward an ideal choice for remote data possession checking in the mobile cloud storage. In our proposed scheme, we check out whether the video data dynamic migrate to an unspecified location (such as: overseas) by adding data geographic location attribute tag into provable data possession protocol. Moreover, we make sure the security of our proposed scheme under the Computational Diffic-Hellman assumption. The analysis and experiment results demonstrate that our proposed scheme is provably secure and efficient.展开更多
The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-10^1 (Cr) were studied by gravimetric method and temperature-programmed desorpt...The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-10^1 (Cr) were studied by gravimetric method and temperature-programmed desorption (TPD) experiments. The MIL-101 crystals were synthesized by microwave irradiation method. The ad- sorption isotherms and kinetic curves of n-hexane on the MIL-101 were measured. Desorption activation energies of n-hexane from the MIL-10^1 were estimated by TPD experiments. The resulthowed that equilibrium amount ofn-hexane adsorbed on the MIL-10^1 was up to 5.62 mmol.g- 1 at 298 K and 1.6 x10^4 Pa, much higher than that of some activated carbons, zeolltes and so on. The isotherms of n-hexane on the MIL-101 could be well fitted with Langmuir-Freundlich model. TPD spectra exhibit two types of adsorption sites on the MIL-101 with desorption activation energies of 39.41 and 86.69 kJ. mol-1. It reflects the surface energy heterogeneity on the MIL-10I frameworks for n-hexane adsorption. The diffusion coefficients of n-hexane are in the range of (1.35- 2.35 ) x 10 - 1 o cm2. s - 1 with ad sorotion activation enerv of 16.33 kl. mol - 1.展开更多
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).
文摘Ontogeny and metamorphic. development of female reproductive organs in Ephedra sinica Stapf were surveyed. At the end of April, female cones began to initialize from the vegetative buds. Pollination occurred in mid-May and seeds matured at the beginning of July. The ontogenetic pattern of female reproductive organs of E. sin ca is basically similar to that of E. distachya L. The foliar nature of the outer envelope of the ovule in Ephedra is corroborated. Reduction of ovule number as a tendency of speciation in the genus is substantiated by the occurrence of tri-ovulate cones coupled with comprehensive characters of the genus. The metamorphic patterns as well as the leaf nature of the outer envelope indicate that female cones of Ephedra are compound while the female reproductive units of the ovulate cone have been reduced from secondary reproductive shoots similar to those of cordaites by phylogenetic transformation, fusion and reduction. Each fertile bract together with its axillary female reproductive unit composed the Bract Scale and Seed Scale Complex of Ephedra.
文摘Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.
基金supported by the National Natural Science Foundation of China(21477023)the Science and Technology Commission of Shanghai Municipality(14JC1400400)~~
文摘Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregation or coalescence.A top‐down strategy is used to synthesize atomically dispersed metal catalysts,based on supported Ag nanoparticles.The changes of the geometric and electronic structures of the Ag atoms during the top‐down process are studied using the in situ synchrotron X‐ray diffraction technique,ex situ X‐ray absorption spectroscopy,and transmission electron microscopy.The experimental results,coupled with the density functional theory calculations,demonstrate that the electronic perturbation of the Ag frontier orbitals,induced by the Ag‐O interactions at the perimeter of the metal‐support interface,is the driving force of the top‐down process.The top‐down synthesis has two important functions:to increase the number of catalytic active sites and to facilitate the study of complex reaction mechanisms(e.g.,formaldehyde oxidation)by developing single‐site model catalysts.
基金Supported by the National Natural Science Foundation of China under Grant No.10475026the Natural Science Foundation of Zhejiang Province under Grant No.KY607518
文摘Properties of the triaxial superdeformed (TSD) bands of odd-A Lu isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia and the spin of the TSD bands in odd-A Lu isotopes are obtained. The calculation shows that the competition between the pairing and anti-pairing effects exists in these TSD bands. Meanwhile, the SU(3) symmetry in TSD bands are broken more seriously than in superdeformed (SD) bands.
文摘Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.
文摘The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.
文摘Understanding the dynamic evolution of active sites of supported metal catalysts during catalysis is fundamentally important for improving its performance,which attracts tremendous research interests in the past decades.There are two main surficial structures for metal catalysts:terrace sites and step sites,which exhibit catalytic activity discrepancy during catalysis.Herein,by using in situ transmission electron microscopy and in situ Fourier transform infrared spectroscopy(FTIR),the transformation between surface terrace and step sites of Pt-TiO_(2) catalysts was studied under CO and O_(2) environments.We found that the{111}step sites tend to form at{111}terrace under O_(2) environment,while these step sites prefer to transform into terrace under CO environment at elevated temperature.Meanwhile,quantitative ratios of terrace/step sites were obtained by in situ FTIR.It was found that this transformation between terrace sites and step sites was reversible during gas treatment cycling of CO and O_(2).The selective adsorption of O_(2) and CO species at different sites,which stabilized the step/terrace sites,was found to serve as the driving force for active sites transition by density functional theory calculations.Inspired by the in situ results,an enhanced catalytic activity of Pt-TiO_(2) catalysts was successfully achieved through tuning surface-active sites by gas treatments.
基金Funded by the Science Foundation from the Scientific Committee of Chongqing ( No.CSTC2005BB4200).
文摘Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water, ethanol and KCI. The potentials generated from these samples were measured by a voltmeter. Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes, and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors. The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors. This property of MWCNTs can advantage their application to nanoscale sensors, detectors and power cells.
基金supported in part by National High Tech Research and Development Program(863 Program)of China(No.2015 AA016005)
文摘Increment of mobile cloud video motivates mobile users to utilize cloud storage service to address their demands, cloud storage provider always furnish a location-independent platform for managing user's data. However, mobile users wonder if their cloud video data leakage or dynamic migration to illegal service providers. In this paper, we design a novel provable data possession protocol based on data geographic location attribute, which allows data owner to auditing the integrity of their video data, which put forward an ideal choice for remote data possession checking in the mobile cloud storage. In our proposed scheme, we check out whether the video data dynamic migrate to an unspecified location (such as: overseas) by adding data geographic location attribute tag into provable data possession protocol. Moreover, we make sure the security of our proposed scheme under the Computational Diffic-Hellman assumption. The analysis and experiment results demonstrate that our proposed scheme is provably secure and efficient.
基金Supported by the National Natural Science Foundation of China(21276092)the Research Foundation of State Key Lab of Subtropical Building Science of China(C713001z)+2 种基金the Science and Technology Research Foundation of Guangzhou City,China(200910814001)Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(2011A060901011)the Fundamental Research Funds for the Central Universities(2013ZZ0060 and 2013ZM0056)
文摘The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-10^1 (Cr) were studied by gravimetric method and temperature-programmed desorption (TPD) experiments. The MIL-101 crystals were synthesized by microwave irradiation method. The ad- sorption isotherms and kinetic curves of n-hexane on the MIL-101 were measured. Desorption activation energies of n-hexane from the MIL-10^1 were estimated by TPD experiments. The resulthowed that equilibrium amount ofn-hexane adsorbed on the MIL-10^1 was up to 5.62 mmol.g- 1 at 298 K and 1.6 x10^4 Pa, much higher than that of some activated carbons, zeolltes and so on. The isotherms of n-hexane on the MIL-101 could be well fitted with Langmuir-Freundlich model. TPD spectra exhibit two types of adsorption sites on the MIL-101 with desorption activation energies of 39.41 and 86.69 kJ. mol-1. It reflects the surface energy heterogeneity on the MIL-10I frameworks for n-hexane adsorption. The diffusion coefficients of n-hexane are in the range of (1.35- 2.35 ) x 10 - 1 o cm2. s - 1 with ad sorotion activation enerv of 16.33 kl. mol - 1.