A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, w...A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, we derive the rotational KdV (rKdV for short) equation. And then, with the help of Jaeobi elliptie functions, we obtain various periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures of rational form.展开更多
Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forci...Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, F and β, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F ≠ 0 there exists a well-defined point transformation to set β = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F ≠ 0 and β = 0. Based upon this classification, distinct classes of group-invariant solutions are obtained and extended to the case β ≠0.展开更多
By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation th...By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation theorems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.展开更多
Applying the classical Lie symmetry approach to the barotropic and quasi-geostrophic potential vorticity equation without forcing and dissipation on a β-plane channel, we find a new symmetry, which is not presented i...Applying the classical Lie symmetry approach to the barotropic and quasi-geostrophic potential vorticity equation without forcing and dissipation on a β-plane channel, we find a new symmetry, which is not presented in a previous work [F. Huang, Commun. Theor. Phys. (Beijing, China) 42 (2004) 903]. A general finite transformation group is obtained based on the full Lie point symmetry, Furthermore, two new types of similarity reduction solutions are obtained.展开更多
The paper deals with the effects of non-stationary external source forcing and dissipation on algebraic Rossby solitary waves.From quasi-geostrophic potential vorticity equation,basing on the multiple-scale method,an ...The paper deals with the effects of non-stationary external source forcing and dissipation on algebraic Rossby solitary waves.From quasi-geostrophic potential vorticity equation,basing on the multiple-scale method,an inhomogeneous Korteweg-de Vries-Benjamin-Ono-Burgers(KdV-B-O-Burgers) equation is obtained.This equation has not been previously derived for Rossby waves.By analysis and calculation,four conservation laws associated with the above equation are first obtained.With the help of pseudo-spectral method,the waterfall plots are obtained and the evolutional characters of algebraic Rossby solitary waves are studied.The results show that non-stationary external source and dissipation have great effect on the generation and evolution of algebraic solitary Rossby waves.展开更多
基金The project supports by National Natural Science Foundation of China under Grant No. 40233033
文摘A simple barotropic potential vorticity equation with the influence of dissipation is applied to investigate the nonlinear Rossby wave in a shear flow in the tropical atmophere. By the reduetive perturbation method, we derive the rotational KdV (rKdV for short) equation. And then, with the help of Jaeobi elliptie functions, we obtain various periodic structures for these Rossby waves. It is shown that dissipation is very important for these periodic structures of rational form.
基金supported by the Austrian Science Fund (FWF),project P20632
文摘Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, F and β, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F ≠ 0 there exists a well-defined point transformation to set β = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F ≠ 0 and β = 0. Based upon this classification, distinct classes of group-invariant solutions are obtained and extended to the case β ≠0.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030, 90718041, and 40975038Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University (IRT0734)
文摘By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation theorems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.
基金The project supported by the Alexander von Humboldt Foundationthe Youth Foundation of Shanghai Jiao Tong UniversityNational Natural Science Foundation of China under Grant No.10475055
文摘Applying the classical Lie symmetry approach to the barotropic and quasi-geostrophic potential vorticity equation without forcing and dissipation on a β-plane channel, we find a new symmetry, which is not presented in a previous work [F. Huang, Commun. Theor. Phys. (Beijing, China) 42 (2004) 903]. A general finite transformation group is obtained based on the full Lie point symmetry, Furthermore, two new types of similarity reduction solutions are obtained.
基金Supported by Innovation Group Project of Chinese Academy of Sciences under Grant No.KZCX2-YW-Q07-01National Sciences key Foundation of China under Grant No.41030855Special Funding of Marine Science Study,State Ocean Administration under Grant No.20090513-2
文摘The paper deals with the effects of non-stationary external source forcing and dissipation on algebraic Rossby solitary waves.From quasi-geostrophic potential vorticity equation,basing on the multiple-scale method,an inhomogeneous Korteweg-de Vries-Benjamin-Ono-Burgers(KdV-B-O-Burgers) equation is obtained.This equation has not been previously derived for Rossby waves.By analysis and calculation,four conservation laws associated with the above equation are first obtained.With the help of pseudo-spectral method,the waterfall plots are obtained and the evolutional characters of algebraic Rossby solitary waves are studied.The results show that non-stationary external source and dissipation have great effect on the generation and evolution of algebraic solitary Rossby waves.