A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating...A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.展开更多
In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the l...In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the liquefied seabed and unliquefled seabed respectively, and the current pipeline vertical pressure was measured with the pressure transducers installed on the two opposite directions (i.e., straight up and straight down) at the same cross-section of the pipeline. The results showed that when the seabed was unliquefied, the two pressure curves varied periodically and overlapped completely, reaching the maximum and minimum at the same time respectively, and the resultant pressure fluctuated within a limited range. However, when the seabed was liquefied, the two pressure curves varied periodically, but they did not overlap completely. They did not reach the maximum (minimum) value at the same time either, and the resultant pressure fluctuated within a wider range. The experiment showed that the submarine stood higher resultant pressure in the vertical direction when the seabed was liquefied, which may cause the frequent sinking and fioatation of the pipeline, leading to its fatigue damage.展开更多
A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one...A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.展开更多
Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current contro...Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.展开更多
The precision of atmospheric dry delay model is closely correlated with the accuracy of GPS water vapor in the process of GPS (Global Position System) remote sensing. Radiosonde data (from 1996 to 2001) at Qingyuan ar...The precision of atmospheric dry delay model is closely correlated with the accuracy of GPS water vapor in the process of GPS (Global Position System) remote sensing. Radiosonde data (from 1996 to 2001) at Qingyuan are used to calculate the exact values of the atmospheric dry delay. Base on these calculations and the surface meteorological parameters, the local year and month correction models of dry delay at the zenith angle of 0° are established by statistical methods. The analysis result shows that the local model works better and is slight more sensitive to altitude angle than universal models and that it is not necessary to build models for each month due to the slight difference between year model and month model. Furthermore, when the altitude angle is less than 75°, the difference between curve path and straight path increases rapidly with altitude angle’s decrease.展开更多
Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanom...Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanomagnets with different geometries, such as circle, square and rectangle, are studied for different directions of applied field. In the case of perpendicular field to the plane, the magnetization and MR are reversible and have not hysteresis. When the field is applied in the plane, the HL is irreversible and is qualitatively well agreeable with the current experimental results. The MR loop is also irreversible and appears two peaks distributed at two sides around zero field. The peaks of magnetic resistance are relative to the vortex state or similar configuration. Large easy-axis anisotropy will suppress the MC anisotropy, and the large magnetoresistance effect disappears.展开更多
In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of...In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current.展开更多
For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 ...For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 to representative soils of China were measured. A difrerence between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite, but not for consted charge soils and bentonite. The larger the proportion of H_2SO_4 in the HNO_3-H_2SO_4 mixture, the lower the calculated H ̄+ ion activities remained in the suspension. The difference in H ̄+ ion activities between H_2SO_4 systems and HNO_3 systems was larger for soils with a low base-saturation (BS) percentage than those with a high BS percentage. The removal of free iron oxides from the soil led to a decrease in the difference, while the coating of Fe_2O_3 ona bentonite resulted in a remarkable appearance of the difference. The effect of ligand exchange on the acidity status of the soil varied with the soil type. SurfaCe soils with a hash organic matter content showed a less pronounced effect of ligand exchange than subsoils did. It was estimated that when acid rain chiefly containing H_2SO_4 was deposited on variable charge soils the acidilication rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO_3 for soils with a high organic matter content, and that the rate might be half of that caused by HNO_3 for soils with a low organic matter content, especially for latosols.展开更多
Impacts of returns on assets are not instantaneously felt, since there is lag period. In this paper we consider the problem of developing a model for the conditional QPDL (quantile polynomial distributed lag) and in...Impacts of returns on assets are not instantaneously felt, since there is lag period. In this paper we consider the problem of developing a model for the conditional QPDL (quantile polynomial distributed lag) and investigate the influences of the conditioning variables on the location, scale and shape parameters of the QPDL model. As an economic application, we consider the production of rubber and its price returns ofSri Lanka. From the analysis we observed that the QPDL model applications were better estimators than the PDL (Polynomial Distributed Lag) models.展开更多
This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at ...This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.展开更多
Based on the dual-phase-lagging(DPL)heat conduction model,the Cattaneo-Vernotte(CV)model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to ...Based on the dual-phase-lagging(DPL)heat conduction model,the Cattaneo-Vernotte(CV)model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to an ultra-fast laser heating.The influence of system parameters on the temperature field is explored.We find that for all the non-Fourier heat conduction models considered in this work,a larger Knudsen number normally leads to a higher temperature.For the DPL model,the large ratio of the phase lag of temperature gradient to the phase lag of heat flux reduces the maximum temperature and shortens the time for the system to reach its steady state.The CV model and the improved CV model lead to the similar thermal wave behavior of the temperature field,but the thermal wave speeds for these two models are different,especially for large Knudsen numbers.When the phase lag of temperature gradient is smaller,the difference between the DPL model and the improved CV model is not significant,but for the large phase lag of temperature gradient the difference becomes quite significant,especially for the large Knudsen number.In addition,the effect of the surface accommodation coefficient,which is a parameter in the slip boundary condition,on the temperature field of the gold film heated by ultra-fast laser pulses is investigated based on the DPL model.展开更多
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv...The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.展开更多
In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuatio...In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.展开更多
The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. In...The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electron- beam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.展开更多
基金Projects(52174092,51904290)supported by the National Natural Science Foundation,ChinaProject(BK20220157)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(232102321009)supported by Henan Province Science and Technology Key Project,ChinaProject(2022YCPY0202)supported by Fundamental Research Funds for the Central Universities,China。
文摘A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.
基金supported by the grant from the National Natural Science Foundation of China (No. 41076021)
文摘In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the liquefied seabed and unliquefled seabed respectively, and the current pipeline vertical pressure was measured with the pressure transducers installed on the two opposite directions (i.e., straight up and straight down) at the same cross-section of the pipeline. The results showed that when the seabed was unliquefied, the two pressure curves varied periodically and overlapped completely, reaching the maximum and minimum at the same time respectively, and the resultant pressure fluctuated within a limited range. However, when the seabed was liquefied, the two pressure curves varied periodically, but they did not overlap completely. They did not reach the maximum (minimum) value at the same time either, and the resultant pressure fluctuated within a wider range. The experiment showed that the submarine stood higher resultant pressure in the vertical direction when the seabed was liquefied, which may cause the frequent sinking and fioatation of the pipeline, leading to its fatigue damage.
基金partially supported by the University of Salerno (Italy) through the Civil and Environmental Engineering Ph.D. programme and FARB research funding
文摘A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.
基金Projects(2016YFB1200401,2017YFB1200801)supported by the National Key R&D Program of China
文摘Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.
基金Sino-Italian Cooperation Project "An Integrated System for the Planning, Monitoring and Real-time Forecasting of Floods Risks"
文摘The precision of atmospheric dry delay model is closely correlated with the accuracy of GPS water vapor in the process of GPS (Global Position System) remote sensing. Radiosonde data (from 1996 to 2001) at Qingyuan are used to calculate the exact values of the atmospheric dry delay. Base on these calculations and the surface meteorological parameters, the local year and month correction models of dry delay at the zenith angle of 0° are established by statistical methods. The analysis result shows that the local model works better and is slight more sensitive to altitude angle than universal models and that it is not necessary to build models for each month due to the slight difference between year model and month model. Furthermore, when the altitude angle is less than 75°, the difference between curve path and straight path increases rapidly with altitude angle’s decrease.
文摘Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanomagnets with different geometries, such as circle, square and rectangle, are studied for different directions of applied field. In the case of perpendicular field to the plane, the magnetization and MR are reversible and have not hysteresis. When the field is applied in the plane, the HL is irreversible and is qualitatively well agreeable with the current experimental results. The MR loop is also irreversible and appears two peaks distributed at two sides around zero field. The peaks of magnetic resistance are relative to the vortex state or similar configuration. Large easy-axis anisotropy will suppress the MC anisotropy, and the large magnetoresistance effect disappears.
文摘In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current.
文摘For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 to representative soils of China were measured. A difrerence between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite, but not for consted charge soils and bentonite. The larger the proportion of H_2SO_4 in the HNO_3-H_2SO_4 mixture, the lower the calculated H ̄+ ion activities remained in the suspension. The difference in H ̄+ ion activities between H_2SO_4 systems and HNO_3 systems was larger for soils with a low base-saturation (BS) percentage than those with a high BS percentage. The removal of free iron oxides from the soil led to a decrease in the difference, while the coating of Fe_2O_3 ona bentonite resulted in a remarkable appearance of the difference. The effect of ligand exchange on the acidity status of the soil varied with the soil type. SurfaCe soils with a hash organic matter content showed a less pronounced effect of ligand exchange than subsoils did. It was estimated that when acid rain chiefly containing H_2SO_4 was deposited on variable charge soils the acidilication rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO_3 for soils with a high organic matter content, and that the rate might be half of that caused by HNO_3 for soils with a low organic matter content, especially for latosols.
文摘Impacts of returns on assets are not instantaneously felt, since there is lag period. In this paper we consider the problem of developing a model for the conditional QPDL (quantile polynomial distributed lag) and investigate the influences of the conditioning variables on the location, scale and shape parameters of the QPDL model. As an economic application, we consider the production of rubber and its price returns ofSri Lanka. From the analysis we observed that the QPDL model applications were better estimators than the PDL (Polynomial Distributed Lag) models.
基金supported by National Natural Science Foundation of China(Grant No.40930637)Special Project for Earthquake Science(Grant No.200808079)Subject Foundation of Ministry of Education for Doctor Candidates in Universities(Grant No.20100022110001)
文摘This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.
基金The National Natural Science Foundation of China(Grant No.50876054)
文摘Based on the dual-phase-lagging(DPL)heat conduction model,the Cattaneo-Vernotte(CV)model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to an ultra-fast laser heating.The influence of system parameters on the temperature field is explored.We find that for all the non-Fourier heat conduction models considered in this work,a larger Knudsen number normally leads to a higher temperature.For the DPL model,the large ratio of the phase lag of temperature gradient to the phase lag of heat flux reduces the maximum temperature and shortens the time for the system to reach its steady state.The CV model and the improved CV model lead to the similar thermal wave behavior of the temperature field,but the thermal wave speeds for these two models are different,especially for large Knudsen numbers.When the phase lag of temperature gradient is smaller,the difference between the DPL model and the improved CV model is not significant,but for the large phase lag of temperature gradient the difference becomes quite significant,especially for the large Knudsen number.In addition,the effect of the surface accommodation coefficient,which is a parameter in the slip boundary condition,on the temperature field of the gold film heated by ultra-fast laser pulses is investigated based on the DPL model.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0701703)the Fundamental Research Funds for the Central Universities+1 种基金Project Supported by the Research and Innovation Program for Graduate Students in Jiangsu(Grant No.KYLX16_0257)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.CE02-2-47)
文摘The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.
基金supported by National Science Foundation of China under Grant No.61304097Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208
文摘In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2011CB933300), the National Natural Science Foundation of China (Nos. 51271134 and J1210061), the Fundamental Research Funds for the Central Universities, the CERS-1-26 (CERS-China Equipment and Education Resources System), and the China Postdoctoral Science Foundation (Nos. 2013M540602 and 2014T70734).
文摘The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electron- beam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.