A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other s...A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.展开更多
The LAMBDA method that was proposed by Teunissen is introduced. Then, on the basis of both the back-sequential conditional LS technique and the upper-triangular Cholesky decomposition, another form for LAMBDA method i...The LAMBDA method that was proposed by Teunissen is introduced. Then, on the basis of both the back-sequential conditional LS technique and the upper-triangular Cholesky decomposition, another form for LAMBDA method is proposed. This new form for LAMBDA method has the same principle and calculation speed as the traditional LAMBDA method.展开更多
基金China Postdoctoral Science Foundation(No.2004035208)Jiangsu Communication Science Foundation (No.06Y36)
文摘A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.
文摘The LAMBDA method that was proposed by Teunissen is introduced. Then, on the basis of both the back-sequential conditional LS technique and the upper-triangular Cholesky decomposition, another form for LAMBDA method is proposed. This new form for LAMBDA method has the same principle and calculation speed as the traditional LAMBDA method.