We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solve...A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.展开更多
The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier trans...The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case run in a qudit quantum computer, and the quantum circuits are They can be seen as subroutines in a main program given.展开更多
In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of...In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current.展开更多
In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two...In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.展开更多
In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital ...In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital synthesizer(DDS)as signal generator is used as the bridge excitation source,and the bridge is automatically balanced by adjusting and measuring the voltage ratio.Using standard resistors,the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100Hz-100kHz.Aiming at the low efficiency of bridge balancing,an iterative balancing algorithm based on the steepest descent method is proposed.In order to suppress the interference caused by the initial phase change and non-integer periodic sampling,the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform(apFFT).Finally,the corresponding measurement system is built and the inductance measurement experiment is carried out.The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%,and the optimal relative measurement uncertainty of the system can reach 9.89×10^(-4)compared with 5×10^(-5)of commercial impedance analyzer.展开更多
Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This meth...Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This method detects symmetry with phase information utilizing IogGabor wavelets,because phase information is stable and significant, while symmetric points produce patterns easy to be recognised and confirmable in local phase. Phase method does not require any preprocessing, and its result is accurate or invariant to contrast, rotation and illumination conditions. This method can detect mirror symmetry, rotating symmetry and curve symmetry at one time. Results of experiment show that, compared with pivotal element algorithm based on intensity information, phase method is more accurate and robust.展开更多
Soccer is a complex system.Therefore,appropriate(nontrivial) models have to be applied to be able to analyze the behavior of the teams on the pitch.This study analyzed the World Cup Final 2006 between France and Italy...Soccer is a complex system.Therefore,appropriate(nontrivial) models have to be applied to be able to analyze the behavior of the teams on the pitch.This study analyzed the World Cup Final 2006 between France and Italy by means of relative phase.Mean longitudinal and lateral positions of all 20 outfield players were used to calculate relative phase by Hilbert transformation.Whole team-,group-,and attacker-fullbacks couplings showed that soccer is clearly an in-phase game.Perturbations of the relative phase structure helped to identify scoring opportunities of the attacking team.Moreover,analyses of the relative phase structure can help to understand the complexity of soccer.展开更多
An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection, closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transfor...An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection, closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transform profilometry (FTP). The proposed algorithm first detects the residues on the wrapped phase image, applies wavelet analysis to generate the blocking-lines that can just connect the residues of opposite polarity, then carries out the morphology operation to extract the closed contour of the shape, and finally uses the modulation intensity information and the Laplacian of Gaussian operation of the wrapped phase image as the quality map. The unwrapping process is completed from a region of high reliability to that of low reliability and the blocking-lines can prevent the phase error propagation effectively. Furthermore, by using the extracted closed contour to exclude the invalid areas from the phase unwrapping process, the algorithm becomes more efficient. The experiment shows the effec-tiveness of the new algorithm.展开更多
A method to generate Airy beam by combining the Fresnel holographic lens and the cubic phase of Airy beam is proposed. The detailed theoretical derivation to express the optical transform principle of the proposed met...A method to generate Airy beam by combining the Fresnel holographic lens and the cubic phase of Airy beam is proposed. The detailed theoretical derivation to express the optical transform principle of the proposed method is presented. And excellent experimental results are demonstrated. It is shown that this approach works well and simplifies the experimental facility effectively, especially reducing the optical system length to half of that of the conventional method. In addition, the proposed method can realize the beam propagation trajectory control of Airy beam and generate Airy beam array.展开更多
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
基金The National Natural Science Foundation of China(No.6120134461271312+7 种基金11301074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.2011009211002320120092120036)the Program for Special Talents in Six Fields of Jiangsu Province(No.DZXX-031)the Natural Science Foundation of Jiangsu Province(No.BK2012329BK2012743)the United Creative Foundation of Jiangsu Province(No.BY2014127-11)the"333"Project(No.BRA2015288)
文摘A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.
基金Supported by the National Natural Science Foundation of China Grant No.10874098the National Basic Research Program of China under Grant Nos.2009CB929402 and 2011CB9216002
文摘The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case run in a qudit quantum computer, and the quantum circuits are They can be seen as subroutines in a main program given.
文摘In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current.
基金supported by the National Basic Research Program of China under Grant 2013CB329003in part by the National Natural Science Foundation General Program of China under Grant 61171110
文摘In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.
基金National Key Research and Development Plan Project(No.2020YFB2010800)National Natural Science Foundation of China(Nos.61905175,51775377,61971307)+4 种基金Fok Ying Tung Education Foundation(No.171055)China Postdoctoral Science Foundation(No.2020M680878)Guangdong Province Key Research and Development Plan Project(No.2020B0404030001)Tianjin Science and Technology Plan Project(No.20YDTPJC01660)Project of Foreign Affairs Committee of China Aviation Development Sichuan Gas Turbine Research Institute(Nos.GJCZ-2020-0040,GJCZ-2020-0041)。
文摘In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital synthesizer(DDS)as signal generator is used as the bridge excitation source,and the bridge is automatically balanced by adjusting and measuring the voltage ratio.Using standard resistors,the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100Hz-100kHz.Aiming at the low efficiency of bridge balancing,an iterative balancing algorithm based on the steepest descent method is proposed.In order to suppress the interference caused by the initial phase change and non-integer periodic sampling,the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform(apFFT).Finally,the corresponding measurement system is built and the inductance measurement experiment is carried out.The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%,and the optimal relative measurement uncertainty of the system can reach 9.89×10^(-4)compared with 5×10^(-5)of commercial impedance analyzer.
文摘Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This method detects symmetry with phase information utilizing IogGabor wavelets,because phase information is stable and significant, while symmetric points produce patterns easy to be recognised and confirmable in local phase. Phase method does not require any preprocessing, and its result is accurate or invariant to contrast, rotation and illumination conditions. This method can detect mirror symmetry, rotating symmetry and curve symmetry at one time. Results of experiment show that, compared with pivotal element algorithm based on intensity information, phase method is more accurate and robust.
文摘Soccer is a complex system.Therefore,appropriate(nontrivial) models have to be applied to be able to analyze the behavior of the teams on the pitch.This study analyzed the World Cup Final 2006 between France and Italy by means of relative phase.Mean longitudinal and lateral positions of all 20 outfield players were used to calculate relative phase by Hilbert transformation.Whole team-,group-,and attacker-fullbacks couplings showed that soccer is clearly an in-phase game.Perturbations of the relative phase structure helped to identify scoring opportunities of the attacking team.Moreover,analyses of the relative phase structure can help to understand the complexity of soccer.
基金Project (Nos. 2007AA04Z1A5 and 2007AA01Z311) supported by the Hi-Tech Research and Development Program (863) of China
文摘An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection, closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transform profilometry (FTP). The proposed algorithm first detects the residues on the wrapped phase image, applies wavelet analysis to generate the blocking-lines that can just connect the residues of opposite polarity, then carries out the morphology operation to extract the closed contour of the shape, and finally uses the modulation intensity information and the Laplacian of Gaussian operation of the wrapped phase image as the quality map. The unwrapping process is completed from a region of high reliability to that of low reliability and the blocking-lines can prevent the phase error propagation effectively. Furthermore, by using the extracted closed contour to exclude the invalid areas from the phase unwrapping process, the algorithm becomes more efficient. The experiment shows the effec-tiveness of the new algorithm.
文摘A method to generate Airy beam by combining the Fresnel holographic lens and the cubic phase of Airy beam is proposed. The detailed theoretical derivation to express the optical transform principle of the proposed method is presented. And excellent experimental results are demonstrated. It is shown that this approach works well and simplifies the experimental facility effectively, especially reducing the optical system length to half of that of the conventional method. In addition, the proposed method can realize the beam propagation trajectory control of Airy beam and generate Airy beam array.