Ghost artifacts occur in magnetic resonance imaging (MRI) reconstruction because odd and even echoes have different phase offsets. A method based on the projection in hybrid-space is described to remove ghost artifa...Ghost artifacts occur in magnetic resonance imaging (MRI) reconstruction because odd and even echoes have different phase offsets. A method based on the projection in hybrid-space is described to remove ghost artifacts. First, the projection of the even and odd lines along phase-encoding direction in hybrid-space was used to estimate the phase difference between odd and even echoes. Secondly, we fit the phase difference and used it to correct the phase of even or odd echoes. Finally, the corrected image was obtained by performing the inverse Fourier transform along phase-encoding direction in hybrid-space. The experimental results show that linear and nonlinear differences can be corrected and the intensity of ghost artifacts is significantly reduced. The effectiveness of the proposed method is demonstrated in ghost artifact removal.展开更多
A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the ...A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.展开更多
PU (phase unwrapping) is the key step and important problem in DEM (digital elevation model) extraction and the measurement of surface deformation of InSAR (Interferometric synthetic aperture radar). The CKFPUA ...PU (phase unwrapping) is the key step and important problem in DEM (digital elevation model) extraction and the measurement of surface deformation of InSAR (Interferometric synthetic aperture radar). The CKFPUA (conventional Kalman filter phase unwrapping algorithm) can obtain reliable results in the flat terrain areas, but it caused error transmission not making the accurate inversion of surface deformation information in the steep terrain. Considering this situation, so it needs to introduce topographic information for guiding phase unwrapping. Here the 90 m resolution DEM data have been used and it is obtained by SRTM (shuttle radar topography mission) measured jointly by NASA (National Aeronautics and Space Administration) and NIMA (National Imaging Mapping Agency) of U.S. Department of Defense. This paper presents a SD-KFPUA (Kalman filter phase unwrapping algorithm) based on SRTM DEM. With SRTM DEM directing InSAR image to implement phase unwrapping, the speed and accuracy are improved. By analyzing with the conventional Kalman filter phase unwrapping algorithms, it is shown that the proposed method can achieve good results in particular to improve unwrapping accuracy in the low coherence region.展开更多
Objective To compare the phase radians in several cerebral regions between patients with Parkinson’s disease (PD) and control subjects, and to evaluate whether iron deposition quantified by susceptibility-weighted ...Objective To compare the phase radians in several cerebral regions between patients with Parkinson’s disease (PD) and control subjects, and to evaluate whether iron deposition quantified by susceptibility-weighted imaging (SWI) is related to the severity of motor symptoms of PD. Methods SWI consisted of both magnitude and phase images from a fully flow-compensated, 3-dimensional and gradient-echo (GRE) sequence. Magnitude and phase data were collected at GE HD 1.5T. The regions evaluated included frontal white matter, grey matter, cerebrospinal fluid, putamen, caudate nucleus (CN), sub- stantia nigra pars compacta (SNc), substantia nigra pars reticulata (SNr), and red nucleus (RN). A total number of 42 patients (12 patients without cognitive dysfunction, and 30 with cognitive dysfunction from mild to moderate degrees) and 30 control subjects were employed in the present study. Results The phase radians of SNc, CN and RN in PD patients were lower than those in control subjects (P〈0.05). Conclusion The phase radians can be used to estimate the brain iron deposition in PD patients, which may be helpful in the diagnosis and longitudinal monitoring of PD.展开更多
Because the phase contains more information about the field compared to the amplitude, measurement of the phase is encountered in many branches of modern science and engineering. Direct measurement of the phase is dif...Because the phase contains more information about the field compared to the amplitude, measurement of the phase is encountered in many branches of modern science and engineering. Direct measurement of the phase is difficult in the visible regime of the electromagnetic wave. One must employ computational techniques to calculate the phase from the captured intensity. In this paper, we provide a review of our recent work on iterative phase retrieval techniques and their applications in optical imaging.展开更多
Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of ...Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted. Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.展开更多
文摘Ghost artifacts occur in magnetic resonance imaging (MRI) reconstruction because odd and even echoes have different phase offsets. A method based on the projection in hybrid-space is described to remove ghost artifacts. First, the projection of the even and odd lines along phase-encoding direction in hybrid-space was used to estimate the phase difference between odd and even echoes. Secondly, we fit the phase difference and used it to correct the phase of even or odd echoes. Finally, the corrected image was obtained by performing the inverse Fourier transform along phase-encoding direction in hybrid-space. The experimental results show that linear and nonlinear differences can be corrected and the intensity of ghost artifacts is significantly reduced. The effectiveness of the proposed method is demonstrated in ghost artifact removal.
基金Project(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(50275150) supported by the National Natural Science Foundation of China
文摘A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.
基金Acknowledgments The research is supported by the National Science Foundation of China (40874001) and National 863 plans projects of China (2009AA12Z147). The authors would like to express thanks to ESA (European Space Agency) for providing ENVISAT satellite data.
文摘PU (phase unwrapping) is the key step and important problem in DEM (digital elevation model) extraction and the measurement of surface deformation of InSAR (Interferometric synthetic aperture radar). The CKFPUA (conventional Kalman filter phase unwrapping algorithm) can obtain reliable results in the flat terrain areas, but it caused error transmission not making the accurate inversion of surface deformation information in the steep terrain. Considering this situation, so it needs to introduce topographic information for guiding phase unwrapping. Here the 90 m resolution DEM data have been used and it is obtained by SRTM (shuttle radar topography mission) measured jointly by NASA (National Aeronautics and Space Administration) and NIMA (National Imaging Mapping Agency) of U.S. Department of Defense. This paper presents a SD-KFPUA (Kalman filter phase unwrapping algorithm) based on SRTM DEM. With SRTM DEM directing InSAR image to implement phase unwrapping, the speed and accuracy are improved. By analyzing with the conventional Kalman filter phase unwrapping algorithms, it is shown that the proposed method can achieve good results in particular to improve unwrapping accuracy in the low coherence region.
文摘Objective To compare the phase radians in several cerebral regions between patients with Parkinson’s disease (PD) and control subjects, and to evaluate whether iron deposition quantified by susceptibility-weighted imaging (SWI) is related to the severity of motor symptoms of PD. Methods SWI consisted of both magnitude and phase images from a fully flow-compensated, 3-dimensional and gradient-echo (GRE) sequence. Magnitude and phase data were collected at GE HD 1.5T. The regions evaluated included frontal white matter, grey matter, cerebrospinal fluid, putamen, caudate nucleus (CN), sub- stantia nigra pars compacta (SNc), substantia nigra pars reticulata (SNr), and red nucleus (RN). A total number of 42 patients (12 patients without cognitive dysfunction, and 30 with cognitive dysfunction from mild to moderate degrees) and 30 control subjects were employed in the present study. Results The phase radians of SNc, CN and RN in PD patients were lower than those in control subjects (P〈0.05). Conclusion The phase radians can be used to estimate the brain iron deposition in PD patients, which may be helpful in the diagnosis and longitudinal monitoring of PD.
基金Project supported by the National Natural Science Foundation of China(Nos.61377005 and 61327902)the Chinese Academy of Sciences(No.QYZDB-SSW-JSC002)
文摘Because the phase contains more information about the field compared to the amplitude, measurement of the phase is encountered in many branches of modern science and engineering. Direct measurement of the phase is difficult in the visible regime of the electromagnetic wave. One must employ computational techniques to calculate the phase from the captured intensity. In this paper, we provide a review of our recent work on iterative phase retrieval techniques and their applications in optical imaging.
基金supported by the National Natural Science Foundation of China (Nos. 60878057, 60478040 and 30770685)the Hi-Tech Re-search and Development Program (863) of China (Nos. 2006AA02Z4E0 and 2008AA02Z422)+1 种基金the Program for New Century Excellent Talents in University of China (No. NCET-04-0528)the Natural Science Foundation of Zhejiang Province, China (No. Z603003)
文摘Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted. Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.