A 2 5GHz fully integrated LC VCO is fabricated in a standard single poly 4 metal 0 35μm digital CMOS process,using a complementary cross coupled topology for lowering power dissipation and reducing the effect of...A 2 5GHz fully integrated LC VCO is fabricated in a standard single poly 4 metal 0 35μm digital CMOS process,using a complementary cross coupled topology for lowering power dissipation and reducing the effect of 1/ f noise.An on chip LC filtering technique is used to lower the high frequency noise.Accumulation varactors are used to widen frequency tuning.The measured tuning range is 23 percent.A single hexadecagon symmetric on chip spiral is used with grounded shield pattern to reduce the chip area and maximize the quality factor.A phase noise of -118dBc/Hz at 1MHz offset is measured.The power dissipation is 4mA at V DD =3 3V.展开更多
A simple method used for simultaneous measurement of phase retardation and optic axis of wave plate by employing 1/4 wave plate is demonstrated. The theoretical analysis of the measuring principle is presented in deta...A simple method used for simultaneous measurement of phase retardation and optic axis of wave plate by employing 1/4 wave plate is demonstrated. The theoretical analysis of the measuring principle is presented in detail. In the measurement, after adjusting a standard 1/4 wave plate and the fast (slow) axis of the plate to be measured parallel to the pass axis of the polarizer, the plate to be measured is rotated by 450 counterclockwisly. A stepping motor is used to rotate the analyzer. The experimental data are collected by a photodetector and then sent to a computer. According to the output data curve, the phase retardation and optic axis of the plate to be measured can be obtained simultaneously. To test the feasibility of the method, a λ /2 and a λ /8 wave plates are used as examples to demonstrate the measurement procedures. The phase retardation measurement accuracy is better than 0.5×10-2. This method can be used to measure the arbitrary phase retardation conveniently.展开更多
A Monolithic integrated phase locked-loop (PLL) with a low phase noise is proposed in this paper. Several techniques are utilized to improve the performance of the PLL which works at the milli- meter-wave band. The ...A Monolithic integrated phase locked-loop (PLL) with a low phase noise is proposed in this paper. Several techniques are utilized to improve the performance of the PLL which works at the milli- meter-wave band. The on-chip high-Q eoplanar waveguides (CPWs) are utilized in the resonant tank and the differential current amplifier with a resonator is used to realize the VCO. In the output buffer circuit, several stages of cascaded source-followers connect and differential amplifiers are adopted to improve the driving capability of the PLL' s output signals. An improved analog multiplier topology is also used in the PD circuit to improve the gain of the PD. The proposed PLL is realized with a 0.2p, m GaAs pseudomorphie high electron mobility transistor (PHEMT) process. At 10 kHz offset from the center frequency, the measured output phase noise of the PLL output is only -88.83dBc/Hz. The circuit exhibits a low root mean sauare (RMS) litter of 1.68Ds.展开更多
In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping ...In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz. A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power. The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter, with a maximum VCO output frequency of 1.5 GHz, and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.展开更多
Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on t...Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record/to and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of/to and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation ofIto in M layers and partly inhibit the channel openings of/to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of tmnsmural inhibition of/to and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.展开更多
文摘A 2 5GHz fully integrated LC VCO is fabricated in a standard single poly 4 metal 0 35μm digital CMOS process,using a complementary cross coupled topology for lowering power dissipation and reducing the effect of 1/ f noise.An on chip LC filtering technique is used to lower the high frequency noise.Accumulation varactors are used to widen frequency tuning.The measured tuning range is 23 percent.A single hexadecagon symmetric on chip spiral is used with grounded shield pattern to reduce the chip area and maximize the quality factor.A phase noise of -118dBc/Hz at 1MHz offset is measured.The power dissipation is 4mA at V DD =3 3V.
文摘A simple method used for simultaneous measurement of phase retardation and optic axis of wave plate by employing 1/4 wave plate is demonstrated. The theoretical analysis of the measuring principle is presented in detail. In the measurement, after adjusting a standard 1/4 wave plate and the fast (slow) axis of the plate to be measured parallel to the pass axis of the polarizer, the plate to be measured is rotated by 450 counterclockwisly. A stepping motor is used to rotate the analyzer. The experimental data are collected by a photodetector and then sent to a computer. According to the output data curve, the phase retardation and optic axis of the plate to be measured can be obtained simultaneously. To test the feasibility of the method, a λ /2 and a λ /8 wave plates are used as examples to demonstrate the measurement procedures. The phase retardation measurement accuracy is better than 0.5×10-2. This method can be used to measure the arbitrary phase retardation conveniently.
基金Supported by the National Natural Science Foundation of China (No. 61106024, 60901012, 60976029) , the National High Technology Research and Development Program of China (No. 2011AA010301 ), and the Science and Technology Program of Southeast University (No. K J2010402 ).
文摘A Monolithic integrated phase locked-loop (PLL) with a low phase noise is proposed in this paper. Several techniques are utilized to improve the performance of the PLL which works at the milli- meter-wave band. The on-chip high-Q eoplanar waveguides (CPWs) are utilized in the resonant tank and the differential current amplifier with a resonator is used to realize the VCO. In the output buffer circuit, several stages of cascaded source-followers connect and differential amplifiers are adopted to improve the driving capability of the PLL' s output signals. An improved analog multiplier topology is also used in the PD circuit to improve the gain of the PD. The proposed PLL is realized with a 0.2p, m GaAs pseudomorphie high electron mobility transistor (PHEMT) process. At 10 kHz offset from the center frequency, the measured output phase noise of the PLL output is only -88.83dBc/Hz. The circuit exhibits a low root mean sauare (RMS) litter of 1.68Ds.
文摘In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz. A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power. The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter, with a maximum VCO output frequency of 1.5 GHz, and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.
文摘Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record/to and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of/to and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation ofIto in M layers and partly inhibit the channel openings of/to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of tmnsmural inhibition of/to and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.