The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,...The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.展开更多
The Berry phase in a composite system induced by the time-dependent interaction is discussed. We choose two coupled spin-1/2 systems as the composite system: one of the subsystems is subjected to a static magnetic fi...The Berry phase in a composite system induced by the time-dependent interaction is discussed. We choose two coupled spin-1/2 systems as the composite system: one of the subsystems is subjected to a static magnetic field, and the coupling parameters between two spins are controllable in time. We show that the time-dependent interaction can induce the Berry phase in a similar way as that a spin-1/2 system (qubit) is driven by an effective time-dependent magnetic field. Furthermore, using two consecutive cycles with opposite directions of both the static magnetic field as well as opposite signs of the coupling parameters, a nontrivial two-qubit unitary transformation purely based on Berry phases can be constructed.展开更多
By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the intersp...By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the interspecies interaction. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.展开更多
A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and assoc...A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions,water vapor convergence,and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions,vapor condensation and depositions,water vapor storage,and heat divergence over raining stratiform regions.展开更多
We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors...We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors are highly likely to evolve into El Nino events in the Zebiak-Cane model. By exploring the dynamic behaviors of these nonlinear El Nino events caused by the CNOP-type precursors, we find that they, as expected, tend to phase-lock to the annual cycles in the Zebiak-Cane model with the SSTA peak at the end of a calendar year. However, E1 Nino events with CNOPs as initial anomalies in the linearized Zebiak-Cane model are inclined to phase-lock earlier than nonlinear E1 Nino events despite the existence of annual cycles in the model. It is clear that nonlinearities play an important role in El Nino's phase-locking. In particular, nonlinear temperature advection increases anomalous zonal SST differences and anomalous westerlies, which weakens anomalous upwelling and acts on the increasing anomalous vertical temperature difference and, as a result, enhances E1 Nino and then delays the peak SSTA. Finally, we demonstrate that nonlinear temperature advection, together with the effect of the annual cycle, causes El Nino events to peak at the end of the calendar year.展开更多
The masses,one-and two-proton separation energies of proton-rich nuclei with Z = 20-55,are computed using the measured masses of mirror neutron-rich nuclei and the Coulomb displacement energies calculated from the rel...The masses,one-and two-proton separation energies of proton-rich nuclei with Z = 20-55,are computed using the measured masses of mirror neutron-rich nuclei and the Coulomb displacement energies calculated from the relativistic point-coupling model.The implications for the proton drip lines,candidates for two-proton emitters,as well as the impact on the astrophysical rp-process are discussed.展开更多
基金Project(61201381)supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.
基金Supported by National Natural Science Foundation of China under Grant No. 10974016
文摘The Berry phase in a composite system induced by the time-dependent interaction is discussed. We choose two coupled spin-1/2 systems as the composite system: one of the subsystems is subjected to a static magnetic field, and the coupling parameters between two spins are controllable in time. We show that the time-dependent interaction can induce the Berry phase in a similar way as that a spin-1/2 system (qubit) is driven by an effective time-dependent magnetic field. Furthermore, using two consecutive cycles with opposite directions of both the static magnetic field as well as opposite signs of the coupling parameters, a nontrivial two-qubit unitary transformation purely based on Berry phases can be constructed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10574060 and Natural Science Foundation of Beijing under Grant No. 1072010
文摘By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the interspecies interaction. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.
文摘A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions,water vapor convergence,and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions,vapor condensation and depositions,water vapor storage,and heat divergence over raining stratiform regions.
基金sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN203)the National Basic Research Program of China(Grant Nos.2010CB950400&2012CB955202)the National Natural Science Foundation of China(Grant No.41176013)
文摘We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors are highly likely to evolve into El Nino events in the Zebiak-Cane model. By exploring the dynamic behaviors of these nonlinear El Nino events caused by the CNOP-type precursors, we find that they, as expected, tend to phase-lock to the annual cycles in the Zebiak-Cane model with the SSTA peak at the end of a calendar year. However, E1 Nino events with CNOPs as initial anomalies in the linearized Zebiak-Cane model are inclined to phase-lock earlier than nonlinear E1 Nino events despite the existence of annual cycles in the model. It is clear that nonlinearities play an important role in El Nino's phase-locking. In particular, nonlinear temperature advection increases anomalous zonal SST differences and anomalous westerlies, which weakens anomalous upwelling and acts on the increasing anomalous vertical temperature difference and, as a result, enhances E1 Nino and then delays the peak SSTA. Finally, we demonstrate that nonlinear temperature advection, together with the effect of the annual cycle, causes El Nino events to peak at the end of the calendar year.
基金supported partially by the National Natural Science Foundation of China (Grant Nos 10975008 and 10947149)the Program for New Century Excellent Talents in Universitythe Fundamental Research Funds for the Central Universities
文摘The masses,one-and two-proton separation energies of proton-rich nuclei with Z = 20-55,are computed using the measured masses of mirror neutron-rich nuclei and the Coulomb displacement energies calculated from the relativistic point-coupling model.The implications for the proton drip lines,candidates for two-proton emitters,as well as the impact on the astrophysical rp-process are discussed.