Based on micro-displacement measurement principles of the spherical differential capacitance sensor, the relationship between the capacitance variation and the micro-displacement of each pair of detecting electrodes f...Based on micro-displacement measurement principles of the spherical differential capacitance sensor, the relationship between the capacitance variation and the micro-displacement of each pair of detecting electrodes for the superconducting gyroscope (SCG) with eight detecting electrodes is analyzed. The model of the SCG rotor drift is established through dimensionless processing, linearization within micro-displacement and the least-square approach. Both the measurement scheme of the SCG rotor drift based on the model and its parameter relationship are presented. To guarantee the potential of the suspension rotor to be zero, the distributing scheme of four pairs of detecting electrodes is presented. The scheme can measure the magnitude and the direction of the rotor drift. The negative factors for affecting the measurement precision of .the SCG rotor drift and simulation results of the total effects are given. Simulation results show that the distributing capacitance of these differential capacitance sensors, the zero potential of the rotor and the model error are the major negative factors. The methods for eliminating those negative factors and the application range of the model are given. The model ensures the relationship between the output voltage and the rotor drift be linear.展开更多
文摘Based on micro-displacement measurement principles of the spherical differential capacitance sensor, the relationship between the capacitance variation and the micro-displacement of each pair of detecting electrodes for the superconducting gyroscope (SCG) with eight detecting electrodes is analyzed. The model of the SCG rotor drift is established through dimensionless processing, linearization within micro-displacement and the least-square approach. Both the measurement scheme of the SCG rotor drift based on the model and its parameter relationship are presented. To guarantee the potential of the suspension rotor to be zero, the distributing scheme of four pairs of detecting electrodes is presented. The scheme can measure the magnitude and the direction of the rotor drift. The negative factors for affecting the measurement precision of .the SCG rotor drift and simulation results of the total effects are given. Simulation results show that the distributing capacitance of these differential capacitance sensors, the zero potential of the rotor and the model error are the major negative factors. The methods for eliminating those negative factors and the application range of the model are given. The model ensures the relationship between the output voltage and the rotor drift be linear.