We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
A novel fiber Bragg grating(FBG)displacement sensor is proposed,which can achieve wide measuring range displacement detection with variable measurement precision due to its mechanical transfer structure of helical bev...A novel fiber Bragg grating(FBG)displacement sensor is proposed,which can achieve wide measuring range displacement detection with variable measurement precision due to its mechanical transfer structure of helical bevel gear.A prototype is designed and fabricated.The maximum detection displacement of this prototype is 1.751 m,and the precision grade changes from 0.2%to 6.7%.Through analyzing the experiment data which is obtained in the calibration experiment,the measuring range of this sensor is from 0 m to 1.532 m,and the wavelength shift errors between experiment data and theory calculation are all less than 5%.展开更多
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
基金supported by the National Natural Science Foundation of China(Nos.61174018,41472260 and 41202206)
文摘A novel fiber Bragg grating(FBG)displacement sensor is proposed,which can achieve wide measuring range displacement detection with variable measurement precision due to its mechanical transfer structure of helical bevel gear.A prototype is designed and fabricated.The maximum detection displacement of this prototype is 1.751 m,and the precision grade changes from 0.2%to 6.7%.Through analyzing the experiment data which is obtained in the calibration experiment,the measuring range of this sensor is from 0 m to 1.532 m,and the wavelength shift errors between experiment data and theory calculation are all less than 5%.