Based on the internal temperature variation of a dam lagging behind the ambient temperature variation,the ambient temperature of continuous variation is disctetized,and the functional expression of the thermal displac...Based on the internal temperature variation of a dam lagging behind the ambient temperature variation,the ambient temperature of continuous variation is disctetized,and the functional expression of the thermal displacement component of the dam caused by single instantaneous temperature variation is obtained.Considering the temporal and spatial distribution law of the ambient temperature and its relation with air and water temperature,the function is expanded into a Taylor series.As a result,the improved thermal displacement component expression for a dam monitoring model is obtained.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079046,50909041,51139001)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cyclein River Basin (Grant No. IWHR-SKL-201108)+4 种基金the Special Fund of State Key Laboratory of China (Grant Nos. 2009586012,2009586912,201058-5212)the Fundamental Research Funds for the Central Universities(Grant Nos. 2009B08514,2010B20414,2010B01414,2010B14114)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No.2017-B08037)Graduate Innovation Program of Universities in Jiangsu Province (Grant No. CX09B_163Z)the Science Foundation for the Excellent Youth Scholars of Ministry of Education of China (Grant No.20070294023)
文摘Based on the internal temperature variation of a dam lagging behind the ambient temperature variation,the ambient temperature of continuous variation is disctetized,and the functional expression of the thermal displacement component of the dam caused by single instantaneous temperature variation is obtained.Considering the temporal and spatial distribution law of the ambient temperature and its relation with air and water temperature,the function is expanded into a Taylor series.As a result,the improved thermal displacement component expression for a dam monitoring model is obtained.