The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
To get the actual ultimate bearing capacity of concrete dam, the effect of geometric nonlinearity and strain softening on it, which appears in the failure process of concrete dam, is studied. Overload method is adopte...To get the actual ultimate bearing capacity of concrete dam, the effect of geometric nonlinearity and strain softening on it, which appears in the failure process of concrete dam, is studied. Overload method is adopted to obtain the bearing capacity of a concrete dam by taking into consideration strain softening in the material constitutive law, geometric nonlinearity in geometric equation and equilibrium differential equation. Arc-length method is used to find the extreme point and descending branch of the load-displacement curve of the dam. The results present that the effect cannot be ignored. And geometric nonlinearity of structure and strain softening of materials should be considered for numerical analysis of ultimate bearing capacity of a concrete dam.展开更多
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714104)the National Natural Science Foundation of China (Grant Nos. 51079045 and 50779009)
文摘To get the actual ultimate bearing capacity of concrete dam, the effect of geometric nonlinearity and strain softening on it, which appears in the failure process of concrete dam, is studied. Overload method is adopted to obtain the bearing capacity of a concrete dam by taking into consideration strain softening in the material constitutive law, geometric nonlinearity in geometric equation and equilibrium differential equation. Arc-length method is used to find the extreme point and descending branch of the load-displacement curve of the dam. The results present that the effect cannot be ignored. And geometric nonlinearity of structure and strain softening of materials should be considered for numerical analysis of ultimate bearing capacity of a concrete dam.