The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(...The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint.展开更多
Lattice Boltzmann method was used to numerically investigate the motion and orientation distribution of cylindrical and cubic particles in pipe flow with high concentration and high particle to pipe size ratio. The tr...Lattice Boltzmann method was used to numerically investigate the motion and orientation distribution of cylindrical and cubic particles in pipe flow with high concentration and high particle to pipe size ratio. The transient impulse model of 3D collisions between particles and between particle and wall is proposed. The numerical results are qualitatively in agreement with and quantitatively comparable to the experiment data. The results show that the increases of both the cylindrical particle to pipe size ratio and the particle aspect ratio decrease the rotation about all axes. All rotations of cubic particles decrease with increasing the particle concentration. The cubic particles, rotating more drastically in the flow with large Reynolds number, rotate faster than the cylindrical particles with the same size. The cylindrical particles align with the flow direction more obviously with decreasing Reynolds numbers. However, the orientations of cubic particles are spread all over the range with no significant difference in magnitude, and the Reynolds numbers have no obvious effect on the orientations of cubic particles.展开更多
It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on th...It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles.展开更多
To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The ...To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.展开更多
In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this ...In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy.展开更多
The influence of impurities on damping capacities of ZK60 magnesium alloys in the as-cast,as-extruded and T4-treated states was investigated by dynamically mechanical analyzer at room temperature.Granato and Lucke dis...The influence of impurities on damping capacities of ZK60 magnesium alloys in the as-cast,as-extruded and T4-treated states was investigated by dynamically mechanical analyzer at room temperature.Granato and Lucke dislocation pinning model was employed to explain damping properties of the alloys.It is found that reducing impurity content can decrease the amount of second-phase particles,increase grain size and improve damping capacity of the as-cast alloy slightly.The as-extruded alloy with lower impurity content is found to possess obviously higher damping capacity in the relatively high strain region than that with higher impurity concentration,which appears to originate mainly from different dislocation characteristics.The variation tendency of damping property with change of impurity content after solution-treatment is also similar to that in the as-extruded and as-cast states. Meanwhile,the purification of the alloy results in an evident improvement in tensile yield strength in the as-extruded state.展开更多
An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to...An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.展开更多
The structure of Ne isotopes has been investigated by using deformed Skyrme-Hartree-Fock (SHF) method and BCS approximation. Especially the effect of tensor force on the halo structure of 29Ne and 31Ne is discussed....The structure of Ne isotopes has been investigated by using deformed Skyrme-Hartree-Fock (SHF) method and BCS approximation. Especially the effect of tensor force on the halo structure of 29Ne and 31Ne is discussed. To this end, the tensor contributions are considered to the energy density function and the single particle potential in SHF theory. For comparison, four Skyrme interactions are used: SLy5 and SGII without tensor force, and SLy5+T and SGII+ T with tensor force. The results indicate that the inclusion of tensor force shows a more pronounced halo structure for 31Ne.展开更多
Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing ins...Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.展开更多
文摘The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint.
基金Project (No. 10632070) supported by the National Natural Science Foundation of China
文摘Lattice Boltzmann method was used to numerically investigate the motion and orientation distribution of cylindrical and cubic particles in pipe flow with high concentration and high particle to pipe size ratio. The transient impulse model of 3D collisions between particles and between particle and wall is proposed. The numerical results are qualitatively in agreement with and quantitatively comparable to the experiment data. The results show that the increases of both the cylindrical particle to pipe size ratio and the particle aspect ratio decrease the rotation about all axes. All rotations of cubic particles decrease with increasing the particle concentration. The cubic particles, rotating more drastically in the flow with large Reynolds number, rotate faster than the cylindrical particles with the same size. The cylindrical particles align with the flow direction more obviously with decreasing Reynolds numbers. However, the orientations of cubic particles are spread all over the range with no significant difference in magnitude, and the Reynolds numbers have no obvious effect on the orientations of cubic particles.
基金Project(51378498)supported by the National Natural Science Foundation of ChinaProject(BK20141066)supported the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(SKLGDUEK1208)supported by State Key Laboratory for Geo Mechanics and Deep Underground Engineering(China University of Mining & Technology),ChinaProject(DPMEIKF201301)supported by State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact(PLA University of Science and Technology),China
文摘It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),ChinaProject supported by the Postdoctoral Research Station of Central South University,China
文摘To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.
基金partially sponsored by National Key Project of China (No.2012ZX03001013-003)
文摘In typical Wi-Fi based indoor positioning systems employing fingerprint model,plentiful fingerprints need to be trained by trained experts or technician,which extends labor costs and restricts their promotion.In this paper,a novel approach based on crowd paths to solve this problem is presented,which collects and constructs automatically fingerprints database for anonymous buildings through common crowd customers.However,the accuracy degradation problem may be introduced as crowd customers are not professional trained and equipped.Therefore,we define two concepts:fixed landmark and hint landmark,to rectify the fingerprint database in the practical system,in which common corridor crossing points serve as fixed landmark and cross point among different crowd paths serve as hint landmark.Machinelearning techniques are utilized for short range approximation around fixed landmarks and fuzzy logic decision technology is applied for searching hint landmarks in crowd traces space.Besides,the particle filter algorithm is also introduced to smooth the sample points in crowd paths.We implemented the approach on off-the-shelf smartphones and evaluate the performance.Experimental results indicate that the approach can availably construct WiFi fingerprint database without reduce the localization accuracy.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2009BB4215)supported by the Natural Science Foundation of Chongqing Science and Technology Commission,ChinaProject(2008AB4114)supported by the Major Program of Chongqing Science and Technology Commission,China
文摘The influence of impurities on damping capacities of ZK60 magnesium alloys in the as-cast,as-extruded and T4-treated states was investigated by dynamically mechanical analyzer at room temperature.Granato and Lucke dislocation pinning model was employed to explain damping properties of the alloys.It is found that reducing impurity content can decrease the amount of second-phase particles,increase grain size and improve damping capacity of the as-cast alloy slightly.The as-extruded alloy with lower impurity content is found to possess obviously higher damping capacity in the relatively high strain region than that with higher impurity concentration,which appears to originate mainly from different dislocation characteristics.The variation tendency of damping property with change of impurity content after solution-treatment is also similar to that in the as-extruded and as-cast states. Meanwhile,the purification of the alloy results in an evident improvement in tensile yield strength in the as-extruded state.
文摘An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.
基金Supported by National Natural Science Foundation of China under Grant Nos.10975116 and 11275160
文摘The structure of Ne isotopes has been investigated by using deformed Skyrme-Hartree-Fock (SHF) method and BCS approximation. Especially the effect of tensor force on the halo structure of 29Ne and 31Ne is discussed. To this end, the tensor contributions are considered to the energy density function and the single particle potential in SHF theory. For comparison, four Skyrme interactions are used: SLy5 and SGII without tensor force, and SLy5+T and SGII+ T with tensor force. The results indicate that the inclusion of tensor force shows a more pronounced halo structure for 31Ne.
基金supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund) (KRF-2007-D00084)
文摘Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.