In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular lo...In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular load based on the equivalence method. Then, a three-dimensional finite element model of the whole bridge is established. The reliability of the model is verified. Additionally, the mechanical response of continuously reinforced concrete pavement under vehicle loading is analyzed. Finally, the most unfavorable loading conditions of tensile stress, shear stress and vertical displacement are determined. The results show that the most unfavorable loading condition of tensile stress, which is at the bottom of continuously reinforced concrete pavement on the two-way curved arch bridge, is changed compared with that on homogeneous foundation. The most unfavorable loading condition of shear stress at the top is also changed. However, the most unfavorable loading condition of vertical displacement remains unchanged. The tensile stress at the bottom of about 1/4 span of the longitudinal joint, the shear stress at the top of intersection of transverse and longitudinal joint, together with the vertical displacement at the central part of longitudinal joint, are taken as design indices during the structural design of continuously reinforced concrete pavement on the two-way curved arch bridge. The results are helpful for the design of continuously reinforced concrete pavement on unequal- thickness base for the two-way curved arch bridge.展开更多
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular load based on the equivalence method. Then, a three-dimensional finite element model of the whole bridge is established. The reliability of the model is verified. Additionally, the mechanical response of continuously reinforced concrete pavement under vehicle loading is analyzed. Finally, the most unfavorable loading conditions of tensile stress, shear stress and vertical displacement are determined. The results show that the most unfavorable loading condition of tensile stress, which is at the bottom of continuously reinforced concrete pavement on the two-way curved arch bridge, is changed compared with that on homogeneous foundation. The most unfavorable loading condition of shear stress at the top is also changed. However, the most unfavorable loading condition of vertical displacement remains unchanged. The tensile stress at the bottom of about 1/4 span of the longitudinal joint, the shear stress at the top of intersection of transverse and longitudinal joint, together with the vertical displacement at the central part of longitudinal joint, are taken as design indices during the structural design of continuously reinforced concrete pavement on the two-way curved arch bridge. The results are helpful for the design of continuously reinforced concrete pavement on unequal- thickness base for the two-way curved arch bridge.