Uniform seed spacing is considered a fundamental factor in quality and yield for many crops and drill manufacturers continuously try to improve the accuracy in seed placement, according to the cultivation standard req...Uniform seed spacing is considered a fundamental factor in quality and yield for many crops and drill manufacturers continuously try to improve the accuracy in seed placement, according to the cultivation standard requirements. This paper reports the results of tests on the performances of a six row pneumatic precision drill in which the depression into each sowing unit is created by means of flexible pipes that do not start directly from the fan, as in most pneumatic drills, but from an air duct having the function of uniformly distributing the air flow along the working width. Field tests have been conducted, using three graded seeds, to evaluate the accuracy of the single seed metering system, according to ISO 7256/1 standard, and the uniformity of negative pressure, through the measurement of the distance between seeds in the furrow, under two speed conditions (5 and 8 km bl).展开更多
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravit...Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.展开更多
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet lo...The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet location deviation from the symmetric geometry center and different flow rates at two symmetric outlets) generate asymmetric flow fields near the droplet, which results in the asymmetric breakup of the latter. Four typical breakup regimes(no breakup, one-side breakup, retraction breakup and direct breakup) have been observed.Two regime maps are plotted to describe the transition from one regime to another for the two types of different asymmetries, respectively. A power law model, which is based on the three critical factors(the capillary number,the asymmetry of flow fields and the initial volume ratio), is employed to predict the volume ratio of the two unequal daughter droplets generated in the direct breakup. The influences of capillary numbers and the asymmetries have been studied systematically in this paper. The larger the asymmetry is, the bigger the oneside breakup zone is. The larger the capillary number is, the more possible the breakup is in the direct breakup zone. When the radius of the initial droplet is 20 μm, the critical capillary numbers are 0.122, 0.128, 0.145,0.165, 0.192 and 0.226 for flow asymmetry factor AS= 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, in the flow system whose asymmetry is generated by location deviations. In the flow system whose asymmetry is generated by two different flow rates at two outlets, the critical capillary numbers are 0.121, 0.133, 0.145, 0.156 and 0.167 for AS= 1/21, 3/23, 1/5, 7/27 and 9/29, respectively.展开更多
A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is...A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.展开更多
Pressure fluctuation around the tongue has large effect on the stable operation of a centrifugal pump. In this paper, the Reynolds averaged Navier-Stokes equations (RANS) and the RNG k-epsilon turbulence model is em...Pressure fluctuation around the tongue has large effect on the stable operation of a centrifugal pump. In this paper, the Reynolds averaged Navier-Stokes equations (RANS) and the RNG k-epsilon turbulence model is employed to simulate the flow in a pump. The flow field in the centrifugal pump is computed for a range of flow rate. The simulation results have been compared with the experimental data and good agreement has been achieved. In order to study the interaction of the tongue with the impeller, fifteen monitor probes are evenly distributed circumferentially at three radii around the tongue. Pressure distribution is investigated at various blade positions while the blade approaches to and leaves the tongue region. Results show that pressure signal fluctuates largely around the tongue, and it is more intense near the tongue surface. At design condition, standard deviation of pressure fluctua- tion is the minimum. At large flow rate, the increased low pressure region at the blade trailing edge results in the increases of pressure fluctuation amplitude and pressure spectra at the monitor probes. Minimum pressure is obtained when the blade is facing to the tongue. It is found that the amplitude of pressure fluctuation strongly depends on the blade positions at large flow rate, and pressure fluctuation is caused by the relative movement between blades and tongue. At small flow rate, the rule of pressure fluctuation is mainly depending on the structure of vortex flow at blade passage exit besides the influence fTom the relative position between the blade and the tongue.展开更多
Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used...Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used to solve the unsteady Reynolds averaged Navier-Stokes(URANS) equations. It is found that the single grooves at various axial locations could have a large impact on the self-induced unsteadiness and the stall margin improvement(SMI) of compressor. The trend of SMI with groove center location demonstrates that the groove located near the mid of blade tip chord generates the best SMI. The worst groove is located about 20% Cax after the blade leading edge. The root-mean-squre of static pressure(RMSP) contours at 99.5% span and fast Fourier transform for the static pressure traces recorded in the tip clearance region for each casing are analyzed. The results demonstrate that the single groove location not only affects the oscillating strength but also the frequency of the unsteady tip leakage flow. At the near-stall point of smooth casing, the self-induced unsteadiness of TLF is enhanced most by the best grooved casing for SMI. While, the self-induced unsteadiness disappears when the worst groove for SMI is added. The characteristic frequency of TLF is about 0.55 blade passing frequency(BPF) with smooth casing. The frequency components become complicated as the single groove moves from the leading edge to the trailing edge of the blade.展开更多
Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gat...Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method.The structure of a gate valve and a simplified structure are investigated.The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow.The results show that for all investigated open degrees and Stokes numbers(St),there are little difference of gas flow properties and flow coefficients between two placements.It is also found that the trajectories of particles for two placements are mostly identical when St << 1,making the erosion independent of placement.With the increase of St,the distinction of trajectories between placements becomes more obvious,leading to an increasing difference of the erosion distributions.Besides,the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250 μm.展开更多
Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans.Three impellers(Ⅰ,Ⅱ,Ⅲ)having same outer diameter,but different radius ratio and bla...Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans.Three impellers(Ⅰ,Ⅱ,Ⅲ)having same outer diameter,but different radius ratio and blade angles were employed for the investigation.Each impeller was tested with two tongue shapes.Flow survey was carried out for each impeller and tongue shape at two flow coefficients.and for each flow coefficient at different circumferential positions.The flow is two-dimensional along the blade span except near the shrouds.The total pressure developed by the impellers in each case is found to be maximum at a circumferential position of around 270°.The total and static pressures at the inlet of impellers are more or less same regardless of impeller and tongue geometry,but they vary considerably at exit of the impellers.Impeller Ⅲ with tongue T2 develops higher total pressure and efficiency where as impeller Ⅱ with tongue T2 develops minimum total pressure.Higher diffusion and smaller vortex size are the reasons for better performance of impeller Ⅲwith tongue T2。展开更多
Two types of flow configurations with bleed their aerodynamic thermal loads and related in two-dimensional hypersonic flows flow structures at choked conditions. are numerically examined to investigate One is a turbul...Two types of flow configurations with bleed their aerodynamic thermal loads and related in two-dimensional hypersonic flows flow structures at choked conditions. are numerically examined to investigate One is a turbulent boundary layer flow without shock impingement where the effects of the slot angle are discussed, and the other is shock wave boundary layer in- teractions where the effects of slot angle and slot location relative to shock impingement point are surveyed. A key separation is induced by bleed barrier shock on the upstream slot wall, resulting in a localized maximum heat flux at the reattachment point. For slanted slots, the dominating flow patterns are not much affected by the change in slot angle, but vary dramatically with slot location relative to the shock impingement point. Different flow structures are found in the case of normal slot, such as a flow pattern similar to typical Laval nozzle flow, the largest separation bubble which is almost independent of the shock position. Its larger detached distance results in 20% lower stagnation heat flux on the downstream slot corner, but with much wider area suffering from severe thermal loads. In spite of the complexity of the flow patterns, it is clearly revealed that the heat flux generally rises with the slot location moving downstream, and an increase in slot angle from 20° to 40° reduces 50% the heat flux peak at the reattachment point in the slot passage. The results further indicate that the bleed does not raise the heat flux around the slot for all cases except for the area around the downstream slot corner. Among all bleed configurations, the slot angle of 40° located slightly upstream of the incident shock is regarded as the best.展开更多
This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software.By arranging virtual probes at different positions in both inl...This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software.By arranging virtual probes at different positions in both inlet and outlet planes,the aerodynamic performance of the centrifugal compressor is measured and compared with each other.Then effects of measuring positions on measurement results are discussed.The results show that it will generate notable measuring errors of the pressure ratio and efficiency if the inlet total pressure is measured using a single-point probe.The inlet total pressure data can be accurate when they are measured using a 3-point rake.The outlet total pressure and total temperature data can not be accurate if they are respectively measured at one circumferential position even using a multi-point rake.Increasing tangential measuring positions at the outlet is effective to improve the test accuracy.When the outlet total pressure and total temperature are respectively measured at 3 tangential positions,the data can be almost accurate.展开更多
文摘Uniform seed spacing is considered a fundamental factor in quality and yield for many crops and drill manufacturers continuously try to improve the accuracy in seed placement, according to the cultivation standard requirements. This paper reports the results of tests on the performances of a six row pneumatic precision drill in which the depression into each sowing unit is created by means of flexible pipes that do not start directly from the fan, as in most pneumatic drills, but from an air duct having the function of uniformly distributing the air flow along the working width. Field tests have been conducted, using three graded seeds, to evaluate the accuracy of the single seed metering system, according to ISO 7256/1 standard, and the uniformity of negative pressure, through the measurement of the distance between seeds in the furrow, under two speed conditions (5 and 8 km bl).
基金National Key Technologies R&D Program(No.2012BAD22B04)Talent Introduction Project of Jilin Province
文摘Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.
基金Supported by Major State Basic Research Development Program of China(2012CB720305)the National Natural Science Foundation of China(21376162)
文摘The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet location deviation from the symmetric geometry center and different flow rates at two symmetric outlets) generate asymmetric flow fields near the droplet, which results in the asymmetric breakup of the latter. Four typical breakup regimes(no breakup, one-side breakup, retraction breakup and direct breakup) have been observed.Two regime maps are plotted to describe the transition from one regime to another for the two types of different asymmetries, respectively. A power law model, which is based on the three critical factors(the capillary number,the asymmetry of flow fields and the initial volume ratio), is employed to predict the volume ratio of the two unequal daughter droplets generated in the direct breakup. The influences of capillary numbers and the asymmetries have been studied systematically in this paper. The larger the asymmetry is, the bigger the oneside breakup zone is. The larger the capillary number is, the more possible the breakup is in the direct breakup zone. When the radius of the initial droplet is 20 μm, the critical capillary numbers are 0.122, 0.128, 0.145,0.165, 0.192 and 0.226 for flow asymmetry factor AS= 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, in the flow system whose asymmetry is generated by location deviations. In the flow system whose asymmetry is generated by two different flow rates at two outlets, the critical capillary numbers are 0.121, 0.133, 0.145, 0.156 and 0.167 for AS= 1/21, 3/23, 1/5, 7/27 and 9/29, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10747004,11065006,and 81060307
文摘A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.
基金supported by the National Natural Science Foundation of China(51579224,51536008)Zhejiang Province Science and Technology Plan Project(2018C03046)the Natural Science Foundation of Zhejiang Province(LQ16E090005)
文摘Pressure fluctuation around the tongue has large effect on the stable operation of a centrifugal pump. In this paper, the Reynolds averaged Navier-Stokes equations (RANS) and the RNG k-epsilon turbulence model is employed to simulate the flow in a pump. The flow field in the centrifugal pump is computed for a range of flow rate. The simulation results have been compared with the experimental data and good agreement has been achieved. In order to study the interaction of the tongue with the impeller, fifteen monitor probes are evenly distributed circumferentially at three radii around the tongue. Pressure distribution is investigated at various blade positions while the blade approaches to and leaves the tongue region. Results show that pressure signal fluctuates largely around the tongue, and it is more intense near the tongue surface. At design condition, standard deviation of pressure fluctua- tion is the minimum. At large flow rate, the increased low pressure region at the blade trailing edge results in the increases of pressure fluctuation amplitude and pressure spectra at the monitor probes. Minimum pressure is obtained when the blade is facing to the tongue. It is found that the amplitude of pressure fluctuation strongly depends on the blade positions at large flow rate, and pressure fluctuation is caused by the relative movement between blades and tongue. At small flow rate, the rule of pressure fluctuation is mainly depending on the structure of vortex flow at blade passage exit besides the influence fTom the relative position between the blade and the tongue.
基金supported by National Natural Science Foundation of China with project No.51010007,No.51106153
文摘Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used to solve the unsteady Reynolds averaged Navier-Stokes(URANS) equations. It is found that the single grooves at various axial locations could have a large impact on the self-induced unsteadiness and the stall margin improvement(SMI) of compressor. The trend of SMI with groove center location demonstrates that the groove located near the mid of blade tip chord generates the best SMI. The worst groove is located about 20% Cax after the blade leading edge. The root-mean-squre of static pressure(RMSP) contours at 99.5% span and fast Fourier transform for the static pressure traces recorded in the tip clearance region for each casing are analyzed. The results demonstrate that the single groove location not only affects the oscillating strength but also the frequency of the unsteady tip leakage flow. At the near-stall point of smooth casing, the self-induced unsteadiness of TLF is enhanced most by the best grooved casing for SMI. While, the self-induced unsteadiness disappears when the worst groove for SMI is added. The characteristic frequency of TLF is about 0.55 blade passing frequency(BPF) with smooth casing. The frequency components become complicated as the single groove moves from the leading edge to the trailing edge of the blade.
基金supported by National Natural Science Foundation of China(Grant No.21276241)etc
文摘Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method.The structure of a gate valve and a simplified structure are investigated.The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow.The results show that for all investigated open degrees and Stokes numbers(St),there are little difference of gas flow properties and flow coefficients between two placements.It is also found that the trajectories of particles for two placements are mostly identical when St << 1,making the erosion independent of placement.With the increase of St,the distinction of trajectories between placements becomes more obvious,leading to an increasing difference of the erosion distributions.Besides,the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250 μm.
文摘Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans.Three impellers(Ⅰ,Ⅱ,Ⅲ)having same outer diameter,but different radius ratio and blade angles were employed for the investigation.Each impeller was tested with two tongue shapes.Flow survey was carried out for each impeller and tongue shape at two flow coefficients.and for each flow coefficient at different circumferential positions.The flow is two-dimensional along the blade span except near the shrouds.The total pressure developed by the impellers in each case is found to be maximum at a circumferential position of around 270°.The total and static pressures at the inlet of impellers are more or less same regardless of impeller and tongue geometry,but they vary considerably at exit of the impellers.Impeller Ⅲ with tongue T2 develops higher total pressure and efficiency where as impeller Ⅱ with tongue T2 develops minimum total pressure.Higher diffusion and smaller vortex size are the reasons for better performance of impeller Ⅲwith tongue T2。
基金supported by the National Natural Science Foundation of China(Grant Nos.91216115 and 11472279)
文摘Two types of flow configurations with bleed their aerodynamic thermal loads and related in two-dimensional hypersonic flows flow structures at choked conditions. are numerically examined to investigate One is a turbulent boundary layer flow without shock impingement where the effects of the slot angle are discussed, and the other is shock wave boundary layer in- teractions where the effects of slot angle and slot location relative to shock impingement point are surveyed. A key separation is induced by bleed barrier shock on the upstream slot wall, resulting in a localized maximum heat flux at the reattachment point. For slanted slots, the dominating flow patterns are not much affected by the change in slot angle, but vary dramatically with slot location relative to the shock impingement point. Different flow structures are found in the case of normal slot, such as a flow pattern similar to typical Laval nozzle flow, the largest separation bubble which is almost independent of the shock position. Its larger detached distance results in 20% lower stagnation heat flux on the downstream slot corner, but with much wider area suffering from severe thermal loads. In spite of the complexity of the flow patterns, it is clearly revealed that the heat flux generally rises with the slot location moving downstream, and an increase in slot angle from 20° to 40° reduces 50% the heat flux peak at the reattachment point in the slot passage. The results further indicate that the bleed does not raise the heat flux around the slot for all cases except for the area around the downstream slot corner. Among all bleed configurations, the slot angle of 40° located slightly upstream of the incident shock is regarded as the best.
基金funded by Chinese Key Laboratory Fund,Grant No.9140C3310040705the National Natural Science Foundation of China,Grant No.50776004+1 种基金supported by the 111 Project,No.B07009973 Project,No.2007CB210103
文摘This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software.By arranging virtual probes at different positions in both inlet and outlet planes,the aerodynamic performance of the centrifugal compressor is measured and compared with each other.Then effects of measuring positions on measurement results are discussed.The results show that it will generate notable measuring errors of the pressure ratio and efficiency if the inlet total pressure is measured using a single-point probe.The inlet total pressure data can be accurate when they are measured using a 3-point rake.The outlet total pressure and total temperature data can not be accurate if they are respectively measured at one circumferential position even using a multi-point rake.Increasing tangential measuring positions at the outlet is effective to improve the test accuracy.When the outlet total pressure and total temperature are respectively measured at 3 tangential positions,the data can be almost accurate.