Most existing flocking algorithms assume one single virtual leader and rely on information on both relative positions and relative velocities among neighboring agents.In this paper,the problem of controlling a flock o...Most existing flocking algorithms assume one single virtual leader and rely on information on both relative positions and relative velocities among neighboring agents.In this paper,the problem of controlling a flock of mobile autonomous agents to follow multiple virtual leaders is investigated by using only position information in the sense that agents with the same virtual leader asymptotically attain the same velocity and track the corresponding virtual leader based on only position measurements.A flocking algorithm is proposed under which every agent asymptotically attains its desired velocity,collision between agents can be avoided,and the final tight formation minimizes all agents' global potentials.A simulation example is presented to verify and illustrate the theoretical results.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.61104140the Fundamental Research Funds for the Central Universities HUST under Grant Nos.2011JC055 and 20112292+1 种基金the Research Fund for the Doctoral Program of Higher Education (RFDP) under Grant No.20100142120023Natural Science Foundation of Hubei Province of China under Grant No.2011CDB042
文摘Most existing flocking algorithms assume one single virtual leader and rely on information on both relative positions and relative velocities among neighboring agents.In this paper,the problem of controlling a flock of mobile autonomous agents to follow multiple virtual leaders is investigated by using only position information in the sense that agents with the same virtual leader asymptotically attain the same velocity and track the corresponding virtual leader based on only position measurements.A flocking algorithm is proposed under which every agent asymptotically attains its desired velocity,collision between agents can be avoided,and the final tight formation minimizes all agents' global potentials.A simulation example is presented to verify and illustrate the theoretical results.