The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However...The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.展开更多
During the observational period of our study, Typhoon Hagupit passed over the mooring site and induced strong near-inertial waves (NIWs), which provided an opportunity to investigate the interactions between interna...During the observational period of our study, Typhoon Hagupit passed over the mooring site and induced strong near-inertial waves (NIWs), which provided an opportunity to investigate the interactions between internal tides (ITs) and NIWs. Based on the mooring data, we compared the current spectra during the typhoon period and non-typhoon period in the northern South China Sea, and found that the high- frequency waves (fD1 and fD2) were evident during the former. Moreover, the observations of the current revealed that fD1 and fD2 occurred near the depth of strong vertical shear in the NlWs. In order to confirm the generation mechanism of fD1 and fD2, we compared the positions of strong vertical shear in the NIWs and strong vertical velocity in the ITs. It was established that the vertical shear of the horizontal current of the NIWs and the vertical current of the ITs contributed to the generation of fDt and fD2.展开更多
Ice shelf breakups account for most mass loss from the Antarctic Ice Sheet as the consequence of the propagation of crevasses(or rift)in response to stress.Thus there is a pressing need for detecting crevasses’locati...Ice shelf breakups account for most mass loss from the Antarctic Ice Sheet as the consequence of the propagation of crevasses(or rift)in response to stress.Thus there is a pressing need for detecting crevasses’location and depth,to understand the mechanism of calving processes.This paper presents a method of crevasse detection using the ICESat-1/GLAS data.A case study was taken at the Amery Ice Shelf of Antarctica to verify the accuracy of geo-location and depth of crevasses detected.Moreover,based on the limited crevasse points,we developed a method to detect the peak stress points which can be used to track the location of the crack tips and to identify the possible high-risk area where an ice shelf begins to break up.The spatial and temporal distribution of crevasse depth and the spatial distribution of peak stress points of the Amery Ice Shelf were analyzed through 132 tracks in 16 campaign periods of ICESat-1/GLAS between 2003 and 2008.The results showed that the depth of the detected crevasse points ranged from 2 to 31.7 m,which were above the sea level;the crevasse that advected downstream to the front edge of an ice shelf has little possibility to directly result in breakups because the crevasse depth did not show any increasing trend over time;the local stress concentration is distributed mainly in the suture zones on the ice shelves.展开更多
文摘The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.
基金Supported by the National Natural Science Foundation of China(Nos.U1133001,41030855,41376027)the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A502)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘During the observational period of our study, Typhoon Hagupit passed over the mooring site and induced strong near-inertial waves (NIWs), which provided an opportunity to investigate the interactions between internal tides (ITs) and NIWs. Based on the mooring data, we compared the current spectra during the typhoon period and non-typhoon period in the northern South China Sea, and found that the high- frequency waves (fD1 and fD2) were evident during the former. Moreover, the observations of the current revealed that fD1 and fD2 occurred near the depth of strong vertical shear in the NlWs. In order to confirm the generation mechanism of fD1 and fD2, we compared the positions of strong vertical shear in the NIWs and strong vertical velocity in the ITs. It was established that the vertical shear of the horizontal current of the NIWs and the vertical current of the ITs contributed to the generation of fDt and fD2.
基金supported by the Chinese Arctic and Antarctic Administration,Fundamental Research Funds for the Central Universities(Grant No.105560GK)National Basic Research Program of China(Grant No.2012CB957704)+1 种基金National High-tech R&D Program of China(Grant Nos.2008AA121702 and 2008AA09Z117)National Natural Science Foundation of China(Grant Nos.41176163 and 41106157)
文摘Ice shelf breakups account for most mass loss from the Antarctic Ice Sheet as the consequence of the propagation of crevasses(or rift)in response to stress.Thus there is a pressing need for detecting crevasses’location and depth,to understand the mechanism of calving processes.This paper presents a method of crevasse detection using the ICESat-1/GLAS data.A case study was taken at the Amery Ice Shelf of Antarctica to verify the accuracy of geo-location and depth of crevasses detected.Moreover,based on the limited crevasse points,we developed a method to detect the peak stress points which can be used to track the location of the crack tips and to identify the possible high-risk area where an ice shelf begins to break up.The spatial and temporal distribution of crevasse depth and the spatial distribution of peak stress points of the Amery Ice Shelf were analyzed through 132 tracks in 16 campaign periods of ICESat-1/GLAS between 2003 and 2008.The results showed that the depth of the detected crevasse points ranged from 2 to 31.7 m,which were above the sea level;the crevasse that advected downstream to the front edge of an ice shelf has little possibility to directly result in breakups because the crevasse depth did not show any increasing trend over time;the local stress concentration is distributed mainly in the suture zones on the ice shelves.