The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive th...The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.展开更多
In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source loc...In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source localization algorithms,like Gauss-Newton algorithm and Conjugate gradient algorithm are subjected to the problems of local minima and good initial guess.This paper presents a new optimization technique to find the descent directions to avoid divergence,and a trust region method is introduced to accelerate the convergence rate.Compared with conventional methods,the new algorithm offers increased stability and is more robust,allowing for stronger non-linearity and wider convergence field to be identified.Simulation results demonstrate that the proposed algorithm improves the typical methods in both speed and robustness,and is able to avoid local minima.展开更多
The calculation method about infrared multi-sites passive system location is introduced based on the principle of the weighted least square method, and the variance matrix of estimated error is offered. Through deduct...The calculation method about infrared multi-sites passive system location is introduced based on the principle of the weighted least square method, and the variance matrix of estimated error is offered. Through deduction, it can be found out that treated appraise precision can be directly analyzed and deduced without carrying out real measure and reaching estimation value. The simulation result shows that the system performance based on the weighted least square method is much better than the traditional passive location method, and it can be also used for reference to the research of the location algorithm of similar system.展开更多
This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position ...This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.展开更多
The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the...The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the fiber position error caused by the wavelength dispersion. The principle of the proposed algorithm is described theoretically, and the correction on each point along the entire fiber is realized. Temperature simulation results validate that the temperature distortion is corrected and the temperature accuracy is effectively improved from +5 ℃ to ±1 ℃.展开更多
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA7014061)
文摘In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source localization algorithms,like Gauss-Newton algorithm and Conjugate gradient algorithm are subjected to the problems of local minima and good initial guess.This paper presents a new optimization technique to find the descent directions to avoid divergence,and a trust region method is introduced to accelerate the convergence rate.Compared with conventional methods,the new algorithm offers increased stability and is more robust,allowing for stronger non-linearity and wider convergence field to be identified.Simulation results demonstrate that the proposed algorithm improves the typical methods in both speed and robustness,and is able to avoid local minima.
基金Supported by the Research Fund for the Department of Science and Technology of Xi'an (No.GG9907)
文摘The calculation method about infrared multi-sites passive system location is introduced based on the principle of the weighted least square method, and the variance matrix of estimated error is offered. Through deduction, it can be found out that treated appraise precision can be directly analyzed and deduced without carrying out real measure and reaching estimation value. The simulation result shows that the system performance based on the weighted least square method is much better than the traditional passive location method, and it can be also used for reference to the research of the location algorithm of similar system.
文摘This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.
基金This work was supported by Natural Science Foundation of China (60977058), Science Fund for Distinguished Young Scholars of Shandong Province of China (JQ200819), Independent Innovation Foundation of Shandong University (IIFSDU2010JC002&2012JC015), and promotive research fund for excellent young and middle-aged scientists of Shandong Province (BS2010DX028).
文摘The influence of the wavelength dispersion on the temperature accuracy of the Raman distributed temperature sensor system (RDTS) is analyzed in detail, and a simple correction algorithm is proposed to compensate the fiber position error caused by the wavelength dispersion. The principle of the proposed algorithm is described theoretically, and the correction on each point along the entire fiber is realized. Temperature simulation results validate that the temperature distortion is corrected and the temperature accuracy is effectively improved from +5 ℃ to ±1 ℃.