Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless...Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.展开更多
A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and or...A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.展开更多
基金Project(2009AA04Z209) supported by the National High Technology Research and Development Program of ChinaProject(R1090674) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(51075363) supported by the National Natural Science Foundation of China
文摘Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
基金Supported by the National Natural Science Foundation of China under Grant No.51179038the Program of New Century Excellent Talents in University under Grant No. NCET-10-0053
文摘A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.