A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). ...A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.展开更多
The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize...The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.展开更多
文摘A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.
文摘The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.