中高速传感器节点能量严重受限,节能是中高速传感器网络(Medium and High Rate Sensor Networks,MHWSN)中MAC协议设计的首要问题。针对SMAC协议固定占空比不能适应中高速网络中多种速率混合业务传输的特点,提出了一种适应于数据采集型...中高速传感器节点能量严重受限,节能是中高速传感器网络(Medium and High Rate Sensor Networks,MHWSN)中MAC协议设计的首要问题。针对SMAC协议固定占空比不能适应中高速网络中多种速率混合业务传输的特点,提出了一种适应于数据采集型应用的速率自适应的MAC协议(AMAC)。AMAC协议在SMAC基础上,采用了基于跨层的速率自适应机制和交错唤醒机制,根据节点速率动态调整占空比,上层节点较下层节点延迟一段时间后激活。仿真结果表明,在数据采集树中该算法节点速率较小时,可有效降低空闲节点的占空比、减少能量消耗,节点速率较大时,调整占空比大小,减少碰撞和阻塞发生的概率,尤其在多种速率任务突发的中高速传感器网络中,能有效提高节点的数据吞吐量并降低时延。展开更多
A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifier...A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifiers with gain boost structure, and biasing all the cells with the same voltage bias source, which requires careful layout design and large capacitors. In addition,capacitor array DAC is also applied to reduce power consumption,and low threshold voltage MOS transistors are used to achieve a large signal processing range. The ADC was implemented in a 0.18μm 4M-1 P CMOS process,and the experimental results indicate that it consumes only 7mW, which is much less than general pipeline ADCs. The ADC was used in a 300000 pixels CMOS image sensor.展开更多
Human body communication is proposed as a promising body proximal comanunication tech- nology for body sensor networks. To achieve low power and slmll volume ill the sensor nodes, a Ra-dio Frequency (RF) application...Human body communication is proposed as a promising body proximal comanunication tech- nology for body sensor networks. To achieve low power and slmll volume ill the sensor nodes, a Ra-dio Frequency (RF) application-specific integrated circuit transceiver tbr Human Body Commnunication (HBC) is presented and the characteristics of HBC are investigated. A high data rate On-Off Keying (OOK)/Frequency-Shift Keying (FSK) modulation protocol and an OOK/FSK delrodulator circuit are introduced in this paper, with a data-rate-to-carrier-frequency ratio up to 70%. A low noise amplifier is proposed to handle the dynamic range problem and improve the sensitivity of the receiver path. In addi-tion, a low power autonmatic-gain-control system is realized using a novel architecture, thereby render-ing the peak detector circuit and loop filter unneces-sary. Finally, the complete chip is fabricated. Simula-tion results suggest receiver sensitivity to be-75 dBm. The transceiver shows an overall power con-smxption of 32 mW when data rate is 5 Mbps, de-livering a P1dB output power of - 30 dBm.展开更多
Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic mater...Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.展开更多
A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering p...A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering path, watertight mechanical structure, and ultra-weak scattering light detecting method. Experiments showed that the sensor had a sensitivity of 0.0076 FTU with the concentration range of 0 - 25 FTU and the R-square of 0.9999. The sensor could withstand the water pressure in depth of 1000m and had the low power consumption in the active mode 10.4mA, sleep mode 65 pA with a supply voltage of 8.4V. Southern China Sea buoy experiments indicated that the sensor could work well in the actual in-situ environment. In comparison with sensors of other companies, our sensor had relatively more comprehensive performance.展开更多
文摘中高速传感器节点能量严重受限,节能是中高速传感器网络(Medium and High Rate Sensor Networks,MHWSN)中MAC协议设计的首要问题。针对SMAC协议固定占空比不能适应中高速网络中多种速率混合业务传输的特点,提出了一种适应于数据采集型应用的速率自适应的MAC协议(AMAC)。AMAC协议在SMAC基础上,采用了基于跨层的速率自适应机制和交错唤醒机制,根据节点速率动态调整占空比,上层节点较下层节点延迟一段时间后激活。仿真结果表明,在数据采集树中该算法节点速率较小时,可有效降低空闲节点的占空比、减少能量消耗,节点速率较大时,调整占空比大小,减少碰撞和阻塞发生的概率,尤其在多种速率任务突发的中高速传感器网络中,能有效提高节点的数据吞吐量并降低时延。
文摘A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifiers with gain boost structure, and biasing all the cells with the same voltage bias source, which requires careful layout design and large capacitors. In addition,capacitor array DAC is also applied to reduce power consumption,and low threshold voltage MOS transistors are used to achieve a large signal processing range. The ADC was implemented in a 0.18μm 4M-1 P CMOS process,and the experimental results indicate that it consumes only 7mW, which is much less than general pipeline ADCs. The ADC was used in a 300000 pixels CMOS image sensor.
基金This study was supported partially by the Projects of National Natural Science Foundation of China under Crants No. 60932001, No.61072031 the National 863 Program of China un-der Crant No. 2012AA02A604+3 种基金 the National 973 Program of China under Cwant No. 2010CB732606 the Next Generation Communication Technology Major Project of National S&T un-der Crant No. 2013ZX03005013 the "One-hundred Talent" and the "Low-cost Healthcare" Programs of Chinese Academy of Sciences and the Guangdong Innovation Research Team Funds for Low-cost Healthcare and Irrage-Guided Therapy.
文摘Human body communication is proposed as a promising body proximal comanunication tech- nology for body sensor networks. To achieve low power and slmll volume ill the sensor nodes, a Ra-dio Frequency (RF) application-specific integrated circuit transceiver tbr Human Body Commnunication (HBC) is presented and the characteristics of HBC are investigated. A high data rate On-Off Keying (OOK)/Frequency-Shift Keying (FSK) modulation protocol and an OOK/FSK delrodulator circuit are introduced in this paper, with a data-rate-to-carrier-frequency ratio up to 70%. A low noise amplifier is proposed to handle the dynamic range problem and improve the sensitivity of the receiver path. In addi-tion, a low power autonmatic-gain-control system is realized using a novel architecture, thereby render-ing the peak detector circuit and loop filter unneces-sary. Finally, the complete chip is fabricated. Simula-tion results suggest receiver sensitivity to be-75 dBm. The transceiver shows an overall power con-smxption of 32 mW when data rate is 5 Mbps, de-livering a P1dB output power of - 30 dBm.
基金the National Natural Science Foundation of China(51701146,51672204)the Fundamental Research Funds for the Central Universities(WUT:2017IB015)Foundation of National Key Laboratory on Electromagnetic Environment Effects(614220504030617)。
文摘Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.
文摘A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering path, watertight mechanical structure, and ultra-weak scattering light detecting method. Experiments showed that the sensor had a sensitivity of 0.0076 FTU with the concentration range of 0 - 25 FTU and the R-square of 0.9999. The sensor could withstand the water pressure in depth of 1000m and had the low power consumption in the active mode 10.4mA, sleep mode 65 pA with a supply voltage of 8.4V. Southern China Sea buoy experiments indicated that the sensor could work well in the actual in-situ environment. In comparison with sensors of other companies, our sensor had relatively more comprehensive performance.