Passive seismic data contain large amounts of low-frequency information. To effectively extract and compensate active seismic data that lack low frequencies, we propose a multitaper spectral reconstruction method base...Passive seismic data contain large amounts of low-frequency information. To effectively extract and compensate active seismic data that lack low frequencies, we propose a multitaper spectral reconstruction method based on multiple sinusoidal tapers and derive equations for multisource and multitrace conditions. Compared to conventional cross correlation and deconvolution reconstruction methods, the proposed method can more accurately reconstruct the relative amplitude of recordings. Multidomain iterative denoising improves the SNR of retrieved data. By analyzing the spectral characteristics of passive data before and after reconstruction, we found that the data are expressed more clearly after reconstruction and denoising. To compensate for the low-frequency information in active data using passive seismic data, we match the power spectrum, supplement it, and then smooth it in the frequency domain. Finally, we use numerical simulation to verify the proposed method and conduct prestack depth migration using data after low-frequency compensation. The proposed power-matching method adds the losing low frequency information in the active seismic data using the low-frequency information of passive- source seismic data. The imaging of compensated data gives a more detailed information of deep structures.展开更多
基金sponsored by the Natural Science Foundation of China(No.41374115)National High Technology Research and Development Program of China(863 project)(No.2014AA06A605)
文摘Passive seismic data contain large amounts of low-frequency information. To effectively extract and compensate active seismic data that lack low frequencies, we propose a multitaper spectral reconstruction method based on multiple sinusoidal tapers and derive equations for multisource and multitrace conditions. Compared to conventional cross correlation and deconvolution reconstruction methods, the proposed method can more accurately reconstruct the relative amplitude of recordings. Multidomain iterative denoising improves the SNR of retrieved data. By analyzing the spectral characteristics of passive data before and after reconstruction, we found that the data are expressed more clearly after reconstruction and denoising. To compensate for the low-frequency information in active data using passive seismic data, we match the power spectrum, supplement it, and then smooth it in the frequency domain. Finally, we use numerical simulation to verify the proposed method and conduct prestack depth migration using data after low-frequency compensation. The proposed power-matching method adds the losing low frequency information in the active seismic data using the low-frequency information of passive- source seismic data. The imaging of compensated data gives a more detailed information of deep structures.