The effectiveness of enhancing treatment of water with low turbidity through combined effects of permanganate oxidation, PAM aiding coagulation and sludge recycling was investigated through continuous bench scale stud...The effectiveness of enhancing treatment of water with low turbidity through combined effects of permanganate oxidation, PAM aiding coagulation and sludge recycling was investigated through continuous bench scale studies. In comparing with ferric chloride coagulation, only recycling sedimentation sludge was ineffective in enhancing treatment of water with low turbidity. PAM with recycled sludge showed positive effects, and the additional permanganate dosing exhibited the best potential of favoring coagulation, which leaded to much lower effluent turbidity and CODMa. Additionally, it was observed that the optimal permanganate dosage was 0. 4 mg/ L and the higher permanganate dosage exhibited inhibiting effects for pollutants removal. SEM analysis indicated that the floes were loosely formed and the particle diameter was critically low for ferric chloride coagulation process. Comparatively, the addition of PAM and permanganate with recycled sludge facilitated the aggregation of tinny particles onto compact PAM polymer chains, therefore contributing to the formation of compact floes with high particle diameter. The combined employment of recycled sludge, PAM and permanganate showed the best potential of favoring coagulation, mainly through synergistic effects between seeding, polymer bridging and increasing effective collision in mechanism. Additionally, the variation of Fe and Mn concentration after recycling and sedimentating units was studied for the processes, and the main species was also investigated for elements Fe and Mn. Sludge recycling and permanganate addition did not increase Fe and Mn concentration in the sedimented water.展开更多
Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanica...Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanical properties of cement-based materials.In this study,the degradation process of mortar samples of limestone and calcined clay cementitious material under sulfate attack is studied by both macroscopic and microscopic analysis.The results show that compared with pure Portland cement,the addition of calcined clay and limestone can significantly reduce the expansion rate,loss of dynamic modulus and mass loss of mortar specimens under sulfate attack.The addition of calcined clay and limestone will refine the pore size distribution of mortar specimens,then inhibiting the diffusion of sulfate and formation of corrosive products,therefore leading to a significant improvement of the sulfate resistance.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2004AA601020)
文摘The effectiveness of enhancing treatment of water with low turbidity through combined effects of permanganate oxidation, PAM aiding coagulation and sludge recycling was investigated through continuous bench scale studies. In comparing with ferric chloride coagulation, only recycling sedimentation sludge was ineffective in enhancing treatment of water with low turbidity. PAM with recycled sludge showed positive effects, and the additional permanganate dosing exhibited the best potential of favoring coagulation, which leaded to much lower effluent turbidity and CODMa. Additionally, it was observed that the optimal permanganate dosage was 0. 4 mg/ L and the higher permanganate dosage exhibited inhibiting effects for pollutants removal. SEM analysis indicated that the floes were loosely formed and the particle diameter was critically low for ferric chloride coagulation process. Comparatively, the addition of PAM and permanganate with recycled sludge facilitated the aggregation of tinny particles onto compact PAM polymer chains, therefore contributing to the formation of compact floes with high particle diameter. The combined employment of recycled sludge, PAM and permanganate showed the best potential of favoring coagulation, mainly through synergistic effects between seeding, polymer bridging and increasing effective collision in mechanism. Additionally, the variation of Fe and Mn concentration after recycling and sedimentating units was studied for the processes, and the main species was also investigated for elements Fe and Mn. Sludge recycling and permanganate addition did not increase Fe and Mn concentration in the sedimented water.
基金supported in part by grants from National Natural Science Foundation of China(52278259).
文摘Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanical properties of cement-based materials.In this study,the degradation process of mortar samples of limestone and calcined clay cementitious material under sulfate attack is studied by both macroscopic and microscopic analysis.The results show that compared with pure Portland cement,the addition of calcined clay and limestone can significantly reduce the expansion rate,loss of dynamic modulus and mass loss of mortar specimens under sulfate attack.The addition of calcined clay and limestone will refine the pore size distribution of mortar specimens,then inhibiting the diffusion of sulfate and formation of corrosive products,therefore leading to a significant improvement of the sulfate resistance.