The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron micr...The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix.展开更多
The effects of compocasting process parameters on some structural and tensile characteristics of the A356-10% SiCp (volume fraction) composites were studied. Semisolid stirring was carried out at temperatures of 590, ...The effects of compocasting process parameters on some structural and tensile characteristics of the A356-10% SiCp (volume fraction) composites were studied. Semisolid stirring was carried out at temperatures of 590, 600 and 610 °C with stirring speeds of 200, 400 and 600 r/min for 10, 20 and 30 min. The distribution of the SiC particles within the matrix, porosity content and tensile properties of the obtained samples were examined. The structural evaluations show that by increasing the stirring time and decreasing the stirring temperature, the uniformity in the particle distribution is improved;however, by increasing the stirring speed the homogeneity firstly increases and then declines. It is also found that by increasing all of the processing parameters, the porosity content is enhanced. From the tensile characteristics viewpoint, the optimum values of the speed, temperature and time are found to be 400 r/min, 590 °C and 30 min, respectively. The contribution of the reinforcement distribution uniformity prevails over that of the porosity level to the tensile properties.展开更多
基金Project(11YZ112)supported by Innovation Project of Shanghai Educational Committee in ChinaProject(J50503)supported by Shanghai Municipal Education Commission in China+1 种基金Project(10JC1411800)supported by Key Basic Research Project of Shanghai Committee of Science and Technology in ChinaProject(JWCXSL1101)supported by Shanghai Graduate Innovation Fund in China
文摘The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix.
文摘The effects of compocasting process parameters on some structural and tensile characteristics of the A356-10% SiCp (volume fraction) composites were studied. Semisolid stirring was carried out at temperatures of 590, 600 and 610 °C with stirring speeds of 200, 400 and 600 r/min for 10, 20 and 30 min. The distribution of the SiC particles within the matrix, porosity content and tensile properties of the obtained samples were examined. The structural evaluations show that by increasing the stirring time and decreasing the stirring temperature, the uniformity in the particle distribution is improved;however, by increasing the stirring speed the homogeneity firstly increases and then declines. It is also found that by increasing all of the processing parameters, the porosity content is enhanced. From the tensile characteristics viewpoint, the optimum values of the speed, temperature and time are found to be 400 r/min, 590 °C and 30 min, respectively. The contribution of the reinforcement distribution uniformity prevails over that of the porosity level to the tensile properties.