The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC ...The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC casting AZ80 magnesium alloy was refined obviously by the low-voltage pulsed magnetic field and significant grain refinement in the DC casting ingot of AZ80 magnesium alloy was achieved.Meanwhile,the morphology of the dentritic in the DC casting ingot was transformed from coarse dentritic to fine rosette with the application of low-voltage pulsed magnetic field.The ability of deformation of the ingot was enhanced and especially the plasticity of the ingot center after upsetting was improved greatly by more than 80%after deformation.展开更多
Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequenc...Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.展开更多
The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and agin...The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.展开更多
The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by th...The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.展开更多
The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were pou...The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were poured at 20°C above their liquidus temperatures which provided the formation of equiaxed grains instead of dendritic growth.Produced billets were reheated for varied time from 20 to 80 min and thixoforged with 50%deformation rate.After thixoforging process,the samples were T6 heat treated for both A356 and A380 alloys.The microstructural evaluation and hardness alteration of thixoforged,solution treated and aged specimens were examined comparatively by using optical microscopy,scanning electron microscopy with energy-dispersive X-ray spectroscopy and Brinell hardness equipment.T6 heat treatment provided relatively uniform microstructure with newly formed precipitates that are Mg2Si and Al2Cu for A356 and A380 billets,respectively.Accordingly,hardness after artificial aging was increased considerably and reached HB 93 for A356 and HB 120 for A380 alloys.展开更多
The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting p...The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.展开更多
Low-cycle fatigue crack initiation behavior of nickel-based single crystal superalloy at 530℃ was investigated.Results show that the behavior of crack initiation is closely related to the maximum strain.When the maxi...Low-cycle fatigue crack initiation behavior of nickel-based single crystal superalloy at 530℃ was investigated.Results show that the behavior of crack initiation is closely related to the maximum strain.When the maximum strain is 2.0%,the fatigue crack is originated at the position of persistent slip bands on the surface of specimen,which is located on the{111}slip plane.No defects are observed at the crack initiation position.When the maximum strain is lower than 1.6%,the cracks are initiated at the casting defects on sub-surface or at interior of the specimen.The casting defects are located on the{100}slip plane vertical to the axial force.The crack is initiated along the{100}slip plane and then expanded along different{111}slip planes after a short stage of expansion.As the maximum strain decreases,the position of crack initiation gradually changes from the surface to the interior.Moreover,the secondary cracks extending inward along the fracture surface appear in the crack initiation area,and there is obvious stress concentration near the secondary cracks.The dislocation density is high near the fracture surface in the crack initiation zone,where a lot of dislocations cutting into the γ'phase exist.An oxide layer of 50‒100 nm is presented on the fracture surface,and Ni,Al,Cr and Co elements are mainly segregated into the oxide layer of the surface.展开更多
基金Project(51034012)supported by the the National Natural Science Foundation of ChinaProject(2013CB632205)supported by the National Basic Research Program of China
文摘The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC casting AZ80 magnesium alloy was refined obviously by the low-voltage pulsed magnetic field and significant grain refinement in the DC casting ingot of AZ80 magnesium alloy was achieved.Meanwhile,the morphology of the dentritic in the DC casting ingot was transformed from coarse dentritic to fine rosette with the application of low-voltage pulsed magnetic field.The ability of deformation of the ingot was enhanced and especially the plasticity of the ingot center after upsetting was improved greatly by more than 80%after deformation.
基金Project(2013CB632203)supported by the National Basic Research and Development Program of ChinaProject(2014028027)supported by the Liaoning Provincial Natural Science Foundation,China
文摘Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.
基金Project(0211002605132)supported by Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences,ChinaProject(0211005303101)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2010BB4074)supported by Natural Science Foundation Project of CQ CSTC,ChinaProject(2010ZD-02)supported by State Key Laboratory for Advanced Metals and Materials,China
文摘The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.
基金Project(2005CB623707)supported by National Basic Research Project of China
文摘The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.
文摘The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were poured at 20°C above their liquidus temperatures which provided the formation of equiaxed grains instead of dendritic growth.Produced billets were reheated for varied time from 20 to 80 min and thixoforged with 50%deformation rate.After thixoforging process,the samples were T6 heat treated for both A356 and A380 alloys.The microstructural evaluation and hardness alteration of thixoforged,solution treated and aged specimens were examined comparatively by using optical microscopy,scanning electron microscopy with energy-dispersive X-ray spectroscopy and Brinell hardness equipment.T6 heat treatment provided relatively uniform microstructure with newly formed precipitates that are Mg2Si and Al2Cu for A356 and A380 billets,respectively.Accordingly,hardness after artificial aging was increased considerably and reached HB 93 for A356 and HB 120 for A380 alloys.
基金Project(2005CB623707) supported by the National Basic Research Program of China Projects(2007CB613701 and 2007CB613702) supported by the National Key Basic Research Program of China+2 种基金Projects(50974037,51004032 and 50904018) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098) supported by the New Century Excellent Talents in University,Ministry of Education,ChinaProject(20100471468) supported by China Postdoctoral Science Foundation
文摘The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.
基金National Science and Technology Major Project(J2019-VI-0022-0138)。
文摘Low-cycle fatigue crack initiation behavior of nickel-based single crystal superalloy at 530℃ was investigated.Results show that the behavior of crack initiation is closely related to the maximum strain.When the maximum strain is 2.0%,the fatigue crack is originated at the position of persistent slip bands on the surface of specimen,which is located on the{111}slip plane.No defects are observed at the crack initiation position.When the maximum strain is lower than 1.6%,the cracks are initiated at the casting defects on sub-surface or at interior of the specimen.The casting defects are located on the{100}slip plane vertical to the axial force.The crack is initiated along the{100}slip plane and then expanded along different{111}slip planes after a short stage of expansion.As the maximum strain decreases,the position of crack initiation gradually changes from the surface to the interior.Moreover,the secondary cracks extending inward along the fracture surface appear in the crack initiation area,and there is obvious stress concentration near the secondary cracks.The dislocation density is high near the fracture surface in the crack initiation zone,where a lot of dislocations cutting into the γ'phase exist.An oxide layer of 50‒100 nm is presented on the fracture surface,and Ni,Al,Cr and Co elements are mainly segregated into the oxide layer of the surface.