A 4.1 GHz two-stage cascode Low-Noise Amplifier(LNA) with Electro-Static Discharge(ESD) protection is presented in this paper.The LNA has been optimized using ESD and LNA co-design methodology to achieve a good perfor...A 4.1 GHz two-stage cascode Low-Noise Amplifier(LNA) with Electro-Static Discharge(ESD) protection is presented in this paper.The LNA has been optimized using ESD and LNA co-design methodology to achieve a good performance.Post-layout simulation results exhibit a forward gain(S21) of about 21 dB, a reverse isolation(S12) of less than-18 dB, an input return loss(S11) of less than-16 dB, and an output return loss(S22) of less than-17 dB.Moreover, the Noise Figure(NF) is 2.6 dB.This design is implemented in TSMC0.18μm RF CMOS technology and the die area is 0.9 mm×0.9 mm.展开更多
The idea of millimeter-wave (MMW) radiometer virtual prototyping is discussed in this paper. Designing environment, designing method and the main modeling components of virtual MMW radiometer are researched. Important...The idea of millimeter-wave (MMW) radiometer virtual prototyping is discussed in this paper. Designing environment, designing method and the main modeling components of virtual MMW radiometer are researched. Important external parameters, which have significant influence to composing system, are used to components modeling, and then components are taken to buildup virtual MMW radiometer system. Moreover, the effect to output is contrasted whether there is a low-noise amplifier or not.展开更多
文摘A 4.1 GHz two-stage cascode Low-Noise Amplifier(LNA) with Electro-Static Discharge(ESD) protection is presented in this paper.The LNA has been optimized using ESD and LNA co-design methodology to achieve a good performance.Post-layout simulation results exhibit a forward gain(S21) of about 21 dB, a reverse isolation(S12) of less than-18 dB, an input return loss(S11) of less than-16 dB, and an output return loss(S22) of less than-17 dB.Moreover, the Noise Figure(NF) is 2.6 dB.This design is implemented in TSMC0.18μm RF CMOS technology and the die area is 0.9 mm×0.9 mm.
文摘The idea of millimeter-wave (MMW) radiometer virtual prototyping is discussed in this paper. Designing environment, designing method and the main modeling components of virtual MMW radiometer are researched. Important external parameters, which have significant influence to composing system, are used to components modeling, and then components are taken to buildup virtual MMW radiometer system. Moreover, the effect to output is contrasted whether there is a low-noise amplifier or not.