Endurance athletic performance is highly related to a number of fiactors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillar...Endurance athletic performance is highly related to a number of fiactors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillary density, and economy. Physiological adaptations in response to acute and chronic exposure to hypoxic environments are well documented and range from short-term detrimental effects to longer-term adaptations that can improve performance at altitude and in sea-level competitions. Many altitude and hypoxic training protocols have been developed, employing various combinations of living and training at sea-level, low, moderate, and high altitudes and utilizing natural and artificial altitudes, with varying degrees of effectiveness. Several factors have been identified that are associated with individual responses to hypoxic training, and techniques for identifying those athletes most likely to benefit from hypoxic trairdng continue to be investigated. Exposure to sufficiently high altitude (2000-3000 m) for more than 12 h/day, while training at lower altitudes, for a minimum of 21 days is recommended. Timing of altitude training related to competition remains under debate, although general recommendations can be considered.展开更多
By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating paramet...By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.展开更多
The attractiveness of flying several SAR (synthetic aperture radar) satellites in a semi-active configuration has been proposed by several studies. The closest implementation of such a mission scenario is exemplifie...The attractiveness of flying several SAR (synthetic aperture radar) satellites in a semi-active configuration has been proposed by several studies. The closest implementation of such a mission scenario is exemplified by the current Terra SAR-X and Tandem-X mission, where both spacecraft are identical monostatic platforms capable of operating in various modes. The bistatic operation mode of the Tandem-X mission is a basic form of the semi-active multi-static operation mode where one satellite serves as a transmitter while the other records the scattered signals simultaneously. The use of a typical monostatic SAR spacecraft operating in-tandem with several receiver only spacecraft is a semi-active mode of operation. This paper examines the capabilities of implementing a constellation of S-band spaceborne SAR platform for alongtrack interferometry over the equatorial region for velocity measurement with particular focus on ship detection. The orbit for the mission is an inclined circular low Earth orbit, which ensures high revisit time, quick coverage and high data throughput. The pendulum configuration is adopted to maintain the relative distance between successive SAR platforms. The conditions and constraints necessary to achieve the orbit geometry required to conduct alongtrack interferometry are defined. The alongtrack separation between platforms necessary to measure specified ship velocity is also discussed. Finally an error budget estimate of the measure radial velocity is provided.展开更多
Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates mate...Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates material balance principle and the concept of material balance pseudo-time proposed by Blansingame. With daily production data of gas well, it could be used to calculate OGIP, current formation pressure, permeability, skin factor, to identify complex geologic boundaries, to determine whether drainage boundary has been reached, to calculate drainage area and drainage radius for single well and to predict performance. It has been extensively employed in more than ten low-permeability gas fields. It proves that most problems in performance analysis for low permeability gas reservoirs could be solved by this method. Field practices show great economical benefits could be achieved by employing this method in gas field development.展开更多
文摘Endurance athletic performance is highly related to a number of fiactors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillary density, and economy. Physiological adaptations in response to acute and chronic exposure to hypoxic environments are well documented and range from short-term detrimental effects to longer-term adaptations that can improve performance at altitude and in sea-level competitions. Many altitude and hypoxic training protocols have been developed, employing various combinations of living and training at sea-level, low, moderate, and high altitudes and utilizing natural and artificial altitudes, with varying degrees of effectiveness. Several factors have been identified that are associated with individual responses to hypoxic training, and techniques for identifying those athletes most likely to benefit from hypoxic trairdng continue to be investigated. Exposure to sufficiently high altitude (2000-3000 m) for more than 12 h/day, while training at lower altitudes, for a minimum of 21 days is recommended. Timing of altitude training related to competition remains under debate, although general recommendations can be considered.
基金Funded by Sustainable Water Management Improves Tomorrow’s City’s Health (SWITCH018530)
文摘By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.
文摘The attractiveness of flying several SAR (synthetic aperture radar) satellites in a semi-active configuration has been proposed by several studies. The closest implementation of such a mission scenario is exemplified by the current Terra SAR-X and Tandem-X mission, where both spacecraft are identical monostatic platforms capable of operating in various modes. The bistatic operation mode of the Tandem-X mission is a basic form of the semi-active multi-static operation mode where one satellite serves as a transmitter while the other records the scattered signals simultaneously. The use of a typical monostatic SAR spacecraft operating in-tandem with several receiver only spacecraft is a semi-active mode of operation. This paper examines the capabilities of implementing a constellation of S-band spaceborne SAR platform for alongtrack interferometry over the equatorial region for velocity measurement with particular focus on ship detection. The orbit for the mission is an inclined circular low Earth orbit, which ensures high revisit time, quick coverage and high data throughput. The pendulum configuration is adopted to maintain the relative distance between successive SAR platforms. The conditions and constraints necessary to achieve the orbit geometry required to conduct alongtrack interferometry are defined. The alongtrack separation between platforms necessary to measure specified ship velocity is also discussed. Finally an error budget estimate of the measure radial velocity is provided.
文摘Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates material balance principle and the concept of material balance pseudo-time proposed by Blansingame. With daily production data of gas well, it could be used to calculate OGIP, current formation pressure, permeability, skin factor, to identify complex geologic boundaries, to determine whether drainage boundary has been reached, to calculate drainage area and drainage radius for single well and to predict performance. It has been extensively employed in more than ten low-permeability gas fields. It proves that most problems in performance analysis for low permeability gas reservoirs could be solved by this method. Field practices show great economical benefits could be achieved by employing this method in gas field development.