This study delved into the mechanism by which the principal component of Astragali Radix regulated ferroptosis in the context of hypoxia-induced pulmonary hypertension,employing a combination of network pharmacology a...This study delved into the mechanism by which the principal component of Astragali Radix regulated ferroptosis in the context of hypoxia-induced pulmonary hypertension,employing a combination of network pharmacology and experimental validation techniques.Active constituents of Astragali Radix and their corresponding targets were identified using the TCMSP database,while therapeutic targets associated with hypoxia-induced pulmonary hypertension were sourced from the GeneCards database.The Venn online tool facilitated the identification of overlapping targets between the active constituents of Astragali Radix and hypoxia-induced pulmonary hypertension.Interaction network diagrams depicting the relationship between Astragali Radix’s active constituents and their targets were constructed using Cytoscape software,with core targets and sub-networks identified using the CytoHubba plug-in.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were conducted using the DAVID database.Additionally,the FerrDb database was consulted to analyze genes implicated in regulating ferroptosis.The investigation revealed 18 active constituents selected from Astragali Radix,with quercetin emerging as the key component.A total of 35 potential targets associated with Astragali Radix in regulating ferroptosis and addressing hypoxia-induced pulmonary hypertension were predicted.Experimental validation demonstrated that quercetin could inhibit the MAPK signaling pathway,resulting in reduced Fe2+and lipid peroxide levels,increased GPX4 expression,and the reversal of ferroptosis.In summary,this study elucidated the fundamental constituents and pivotal signaling pathways through which Astragali Radix modulated ferroptosis and mitigated hypoxia-induced pulmonary hypertension.Specifically,quercetin,a core constituent of Astragali Radix,was observed to inhibit ferroptosis in pulmonary arterial smooth muscle cells via the MAPK pathway and alleviate hypoxia-induced pulmonary hypertension.展开更多
Objective To assess the effect of tetrandrine (Tet) pulmonary targeting microspheres on hypoxic pulmonary hypertension and evaluate its selective action on pulmonary circulation.Methods Twenty rats were exposed to h...Objective To assess the effect of tetrandrine (Tet) pulmonary targeting microspheres on hypoxic pulmonary hypertension and evaluate its selective action on pulmonary circulation.Methods Twenty rats were exposed to hypoxic conditions for 3 weeks. Ten rats were used as normoxic controls. We administered Tet pulmonary targeting microspheres to 10 hypoxic rats and Tet aqueous solution to 10 hypoxic rats and the 10 control rats. Mean pulmonary arterial pressure (mPAP) was measured by a right cardiac catheterization, and mean systemic blood pressure (mSBP) was measured by left femoral catheterization. Results Rats exposed to hypoxia developed pulmonary hypertension. The decrease in mPAP in rats treated with Tet pulmonary targeting microspheres was significantly greater than that in rats receiving Tet aqueous solution (P【0.05), and the effects were longer with Tet pulmonary targeting microspheres. Moreover, Tet pulmonary targeting microspheres, unlike Tet aqueous solution, did not decrease mSBP.Conclusion Tet pulmonary targeting microspheres were more effective than Tet aqueous solution in treating hypoxic pulmonary hypertension and acted selectively on the pulmonary circulation.展开更多
OBJECTIVE: To investigate the role of adrenomedullin (AM) in the development of hypoxic pulmonary hypertension (HPH), and to assess the expression of AM and adrenomedullin receptor (AMR) in the lungs of rats with HPH....OBJECTIVE: To investigate the role of adrenomedullin (AM) in the development of hypoxic pulmonary hypertension (HPH), and to assess the expression of AM and adrenomedullin receptor (AMR) in the lungs of rats with HPH. METHODS: We exposed 10 rats to normobaric hypoxic conditions for 3 weeks to establish rat model of pulmonary hypertension; and 10 other rats were used as normoxic controls. Mean pulmonary arterial pressure (mPAP) was measured by a right cardiac catheterization. The thickness of pulmonary arterioles was measured by a computerized image analyzer. We used the reverse transcription-polymerase chain reaction (RT-PCR) to assess the change of expression of AM and AMR in lung of HPH rat model. RESULTS: Compared with the control group, hypoxic rats developed remarkable pulmonary hypertension, increment in the thickness of pulmonary arterioles and right ventricular hypertrophy (P展开更多
基金National Natural Science Foundation of China(Grant No.82305214)Hunan Province’s Natural Science Fund(Grant No.2023JJ40401)+2 种基金Hunan Administration of Traditional Chinese Medicine(Grant No.B2023024)Hunan Provincial Department of Education Outstanding Youth Project(Grant No.22B0394)State Key Laboratory Project of Chinese Medicine Powder and Innovative Drugs Project(Grant No.21PTKF1002).
文摘This study delved into the mechanism by which the principal component of Astragali Radix regulated ferroptosis in the context of hypoxia-induced pulmonary hypertension,employing a combination of network pharmacology and experimental validation techniques.Active constituents of Astragali Radix and their corresponding targets were identified using the TCMSP database,while therapeutic targets associated with hypoxia-induced pulmonary hypertension were sourced from the GeneCards database.The Venn online tool facilitated the identification of overlapping targets between the active constituents of Astragali Radix and hypoxia-induced pulmonary hypertension.Interaction network diagrams depicting the relationship between Astragali Radix’s active constituents and their targets were constructed using Cytoscape software,with core targets and sub-networks identified using the CytoHubba plug-in.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were conducted using the DAVID database.Additionally,the FerrDb database was consulted to analyze genes implicated in regulating ferroptosis.The investigation revealed 18 active constituents selected from Astragali Radix,with quercetin emerging as the key component.A total of 35 potential targets associated with Astragali Radix in regulating ferroptosis and addressing hypoxia-induced pulmonary hypertension were predicted.Experimental validation demonstrated that quercetin could inhibit the MAPK signaling pathway,resulting in reduced Fe2+and lipid peroxide levels,increased GPX4 expression,and the reversal of ferroptosis.In summary,this study elucidated the fundamental constituents and pivotal signaling pathways through which Astragali Radix modulated ferroptosis and mitigated hypoxia-induced pulmonary hypertension.Specifically,quercetin,a core constituent of Astragali Radix,was observed to inhibit ferroptosis in pulmonary arterial smooth muscle cells via the MAPK pathway and alleviate hypoxia-induced pulmonary hypertension.
文摘Objective To assess the effect of tetrandrine (Tet) pulmonary targeting microspheres on hypoxic pulmonary hypertension and evaluate its selective action on pulmonary circulation.Methods Twenty rats were exposed to hypoxic conditions for 3 weeks. Ten rats were used as normoxic controls. We administered Tet pulmonary targeting microspheres to 10 hypoxic rats and Tet aqueous solution to 10 hypoxic rats and the 10 control rats. Mean pulmonary arterial pressure (mPAP) was measured by a right cardiac catheterization, and mean systemic blood pressure (mSBP) was measured by left femoral catheterization. Results Rats exposed to hypoxia developed pulmonary hypertension. The decrease in mPAP in rats treated with Tet pulmonary targeting microspheres was significantly greater than that in rats receiving Tet aqueous solution (P【0.05), and the effects were longer with Tet pulmonary targeting microspheres. Moreover, Tet pulmonary targeting microspheres, unlike Tet aqueous solution, did not decrease mSBP.Conclusion Tet pulmonary targeting microspheres were more effective than Tet aqueous solution in treating hypoxic pulmonary hypertension and acted selectively on the pulmonary circulation.
基金ThisworkwassupportedbyagrantfromNationalNaturalScienceFoundationofChina (No 39770 339)
文摘OBJECTIVE: To investigate the role of adrenomedullin (AM) in the development of hypoxic pulmonary hypertension (HPH), and to assess the expression of AM and adrenomedullin receptor (AMR) in the lungs of rats with HPH. METHODS: We exposed 10 rats to normobaric hypoxic conditions for 3 weeks to establish rat model of pulmonary hypertension; and 10 other rats were used as normoxic controls. Mean pulmonary arterial pressure (mPAP) was measured by a right cardiac catheterization. The thickness of pulmonary arterioles was measured by a computerized image analyzer. We used the reverse transcription-polymerase chain reaction (RT-PCR) to assess the change of expression of AM and AMR in lung of HPH rat model. RESULTS: Compared with the control group, hypoxic rats developed remarkable pulmonary hypertension, increment in the thickness of pulmonary arterioles and right ventricular hypertrophy (P