期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
实体瘤中的低氧区与低氧选择性药物研究进展 被引量:1
1
作者 杨频 郭春丽 +1 位作者 赵广华 阎军 《化学进展》 SCIE CAS CSCD 2004年第6期1017-1022,共6页
降低抗肿瘤药物的毒性是开发新药的重中之重。本文介绍一种设计抗癌新药的新思路即低氧选择性药物。对肿瘤中低氧区产生的原因 ,对放疗和化疗的影响 ,以及克服它的方法作了阐述 ,着重对低氧选择性药物的研究进展作了评述 ,并指出该药物... 降低抗肿瘤药物的毒性是开发新药的重中之重。本文介绍一种设计抗癌新药的新思路即低氧选择性药物。对肿瘤中低氧区产生的原因 ,对放疗和化疗的影响 ,以及克服它的方法作了阐述 ,着重对低氧选择性药物的研究进展作了评述 ,并指出该药物的发展前景。 展开更多
关键词 肿瘤 低氧 低氧选择性 钴(Ⅲ)络合物 氮芥
下载PDF
Co(III)氮芥配合物的合成、表征及其抗肿瘤活性的初步评价
2
作者 闫军 崔海萍 杨频 《化学研究与应用》 CAS CSCD 北大核心 2003年第1期71-74,共4页
In this paper,a series of Co(Ⅲ)complexes of N,N’-bis-(2-chloroethyl)amine(BCA) were synthesized and characterized by H-NMR and IR spectra.Cyclic voltammtry studies showed that variation of the alkyl group in the aux... In this paper,a series of Co(Ⅲ)complexes of N,N’-bis-(2-chloroethyl)amine(BCA) were synthesized and characterized by H-NMR and IR spectra.Cyclic voltammtry studies showed that variation of the alkyl group in the auxiliary ligands alters the reduction potentials of the complexes,and linear sweep voltammtry studies demonstrated that one electron reduction to the CO(Ⅱ)complexes may cause the release of axial ligand (BCA).In the end the complexes were evaluated for their hypoxia-slective cytotoxicity against S562 cells in vitro,two of them showed stated selectivity. 展开更多
关键词 氮芥 Co(Ⅲ)配合物 低氧选择性 抗肿瘤活性
下载PDF
Fe-Mn/Al_2O_3 catalysts for low temperature selective catalytic reduction of NO with NH_3 被引量:7
3
作者 王晓波 伍士国 +3 位作者 邹伟欣 虞硕涵 归柯庭 董林 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1314-1323,共10页
A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactiva... A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst. 展开更多
关键词 Nitrogen monoxide Low-temperature selective catalytic reduction Fe-Mn catalyst X-ray photoelectron spectroscopy Sulfur dioxide Fourier transform infrared spectroscopy
下载PDF
Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature 被引量:9
4
作者 刘计省 刘坚 +4 位作者 赵震 宋卫余 韦岳长 段爱军 姜桂元 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第5期750-759,共10页
A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized ... A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts. 展开更多
关键词 One-pot synthesis Meso-microporous Cu-SAPO-34 Low temperature Selective catalytic reduction Nitrogen oxides
下载PDF
Influence of preparation methods on the physicochemical properties and catalytic performance of MnO_x-CeO_2 catalysts for NH_3-SCR at low temperature 被引量:47
5
作者 Xiaojiang Yao Kaili Ma +4 位作者 Weixin Zou Shenggui He Jibin An Fumo Yang Lin Dong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第1期146-159,共14页
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature.... This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts. 展开更多
关键词 MnOx‐CeO2 catalyst Preparation method Nitrogen oxides Low‐temperature NH3‐SCR Electron interaction Surface acidity
下载PDF
Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents 被引量:9
6
作者 Xiao-lin ZHU Cun-ying XU +5 位作者 Jie TANG Yi-xin HUA Qi-bo ZHANG Hai LIU Xiang WANG Meng-ting HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2222-2228,共7页
Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust us... Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust using choline chloride-ureaethylene glycol(ChCl-urea-EG) DESs. The zinc extraction efficiency can be up to 85.2% when the slurry concentration is 50 g/L, leaching temperature is 80 °C and stirring speed is 600 r/min. The leaching process is controlled by the diffusion and the corresponding activation energy is 32.1 k J/mol. The resultant solution was directly used for the electrodeposition of zinc. The pure zinc deposit is obtained with a current efficiency of 82.6%. Furthermore, the ChCl-urea-EG DESs can be recycled. This approach is shown to be promising for the recycling of zinc from the zinc-containing dust. 展开更多
关键词 deep eutectic solvent selective leaching zinc oxide dust ZINC direct electrodeposition
下载PDF
Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NO_x with NH_3 被引量:10
7
作者 Xiao Xiang Pengfei Wu +5 位作者 Yi Cao Lei Cao Quanyi Wang Shutao Xu Peng Tian Zhongmin Liu 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第5期918-927,共10页
The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)act... The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)activities(mainly the low‐temperature activities)of all the Cu‐SAPO‐34catalysts declined after low‐temperature steam treatment(LTST).These results show that the texture and acid density of Cu‐SAPO‐34can be better preserved by increasing the Cu loading,although the hydrolysis of Si-O-Al bonds is inevitable.The stability of Cu ions and the stability of the SAPO framework were positively correlated at relatively low Cu loadings.However,a high Cu loading(e.g.,3.67wt%)resulted in a significant decrease in the number of isolated Cu ions.Aggregation of CuO particles also occurred during the LTST,which accounts for the decreasing NH3oxidation activities of the catalysts.Among the catalysts,Cu‐SAPO‐34with a high Si content and medium Cu content(1.37wt%)showed the lowest decrease in NH3‐SCR because its Cu2+content was well retained and its acid density was well preserved. 展开更多
关键词 Cu‐SAPO‐34 Low temperature hydrothermal stability Nitrogen oxides Selective catalytic reduction Ammonia oxidation
下载PDF
Doping effect of cations(Zr^(4+),Al^(3+),and Si^(4+)) on MnO_x/CeO_2 nano-rod catalyst for NH_3-SCR reaction at low temperature 被引量:7
8
作者 Xiaojiang Yao Jun Cao +4 位作者 Li Chen Keke Kang Yang Chen Mi Tian Fumo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期733-743,共11页
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods... Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst. 展开更多
关键词 MnOx/CeO2 nano‐rod catalyst Doping effect Oxygen vacancy Surface acidity Low‐temperature NH3‐SCR reaction
下载PDF
低氧激活的抗肿瘤药物及其研究近况 被引量:7
9
作者 余长顺 欧阳洪贵 +2 位作者 胡斌 翁志斌 李玉艳 《药学进展》 CAS 2012年第2期65-72,共8页
肿瘤微环境的低氧特性使其对放疗和化疗产生耐受性,导致治疗难度增加。低氧激活前药是一类对正常组织无毒或毒性较低、进入肿瘤低氧微环境后即可被激活并发挥抗肿瘤活性的药物,已成为目前抗肿瘤药物研究的热点之一。综述氮氧化物、醌类... 肿瘤微环境的低氧特性使其对放疗和化疗产生耐受性,导致治疗难度增加。低氧激活前药是一类对正常组织无毒或毒性较低、进入肿瘤低氧微环境后即可被激活并发挥抗肿瘤活性的药物,已成为目前抗肿瘤药物研究的热点之一。综述氮氧化物、醌类、硝基化合物及金属络合物这几种低氧激活的抗肿瘤药物及其研究近况。 展开更多
关键词 低氧激活前药 低氧选择性 抗肿瘤活性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部