This paper presents a low voltage, low power RF/analog front-end circuit for passive ultra high frequency (UHF) radio frequency identification (RFID) tags. Temperature compensation is achieved by a reference gener...This paper presents a low voltage, low power RF/analog front-end circuit for passive ultra high frequency (UHF) radio frequency identification (RFID) tags. Temperature compensation is achieved by a reference generator using sub-threshold techniques. The chip maintains a steady system clock in a temperature range from - 40 to 100℃. Some novel building blocks are developed to save system power consumption,including a zero static current power-on reset circuit and a voltage regulator. The RF/analog front-end circuit is implemented with digital base-band and EEPROM to construct a whole tag chip in 0. 18μm CMOS EEPROM technology without Schottcky diodes. Measured results show that the chip has a minimum supply voltage requirement of 0.75V. At this voltage, the total current consumption of the RF/analog frontend circuit is 4.6μA.展开更多
文摘This paper presents a low voltage, low power RF/analog front-end circuit for passive ultra high frequency (UHF) radio frequency identification (RFID) tags. Temperature compensation is achieved by a reference generator using sub-threshold techniques. The chip maintains a steady system clock in a temperature range from - 40 to 100℃. Some novel building blocks are developed to save system power consumption,including a zero static current power-on reset circuit and a voltage regulator. The RF/analog front-end circuit is implemented with digital base-band and EEPROM to construct a whole tag chip in 0. 18μm CMOS EEPROM technology without Schottcky diodes. Measured results show that the chip has a minimum supply voltage requirement of 0.75V. At this voltage, the total current consumption of the RF/analog frontend circuit is 4.6μA.