This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated ...This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.展开更多
This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade ref...This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO 2-NH 3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH 3-NH 3 cascade refrigeration cycles, the mass flow rate ratio of CO 2-NH 3 is larger than those of R13-R22 and NH 3-NH 3, the theoretical COP of CO 2-NH 3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH 3-NH 3 cascade cycle. But the real COP of CO 2-NH 3 cascade cycle will be higher than those of R13-R22 and NH 3-NH 3 because the specific volume of CO 2 at low temperature does not change much and its dynamic viscosity is also small.展开更多
文摘This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.
文摘This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO 2-NH 3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH 3-NH 3 cascade refrigeration cycles, the mass flow rate ratio of CO 2-NH 3 is larger than those of R13-R22 and NH 3-NH 3, the theoretical COP of CO 2-NH 3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH 3-NH 3 cascade cycle. But the real COP of CO 2-NH 3 cascade cycle will be higher than those of R13-R22 and NH 3-NH 3 because the specific volume of CO 2 at low temperature does not change much and its dynamic viscosity is also small.