Aqueous zinc-ion batteries(ZIBs)have attracted immense attention for flexible energy storage devices due to their high safety and low cost.However,conventional flexible aqueous ZIBs will undergo severe capacity loss a...Aqueous zinc-ion batteries(ZIBs)have attracted immense attention for flexible energy storage devices due to their high safety and low cost.However,conventional flexible aqueous ZIBs will undergo severe capacity loss at subzero temperature due to the inevitably freeze of electrolytes.In addition,under large bending or stretching strains,the encapsulation of devices would be damaged,which causes the evaporation of water in electrolytes and results in device failure.Herein,an anti-freezing and anti-drying gel electrolyte based on polyacrylamide(PAM)and glycerol(Gly)is developed.The strong hydrogen-bonding interactions between PAM or Gly and water molecules not only avoid the crystallization of the gel electrolyte at low temperatures,but also constrain the free water and restrict its evaporation.Therefore,such gel electrolyte displays a high ionic conductivity of 9.65×10^(−5)S cm^(−1)at−40℃.Furthermore,it can restrict the dehydration process when the electrolyte is exposed to ambient environment.The flexible ZIBs based on such gel electrolyte exhibit excellent electrochemical performance at−40℃and the devices without encapsulation retain 98%of their initial capacity in ambient condition after 30 days.This work provides a route to design anti-freezing and anti-drying gel electrolytes for aqueous energy storage devices.展开更多
基金supported by the Natural Science Foundation of Tianjin(18JCJQJC46300 and 19JCZDJC31900)the National Natural Science Foundation of China(51822205 and 21875121)+2 种基金the Ministry of Science and Technology of China(2019YFA0705600 and 2017YFA0206701)the Ministry of Education of China(B12015)the"Frontiers Science Center for New Organic Matter",Nankai University(63181206)。
文摘Aqueous zinc-ion batteries(ZIBs)have attracted immense attention for flexible energy storage devices due to their high safety and low cost.However,conventional flexible aqueous ZIBs will undergo severe capacity loss at subzero temperature due to the inevitably freeze of electrolytes.In addition,under large bending or stretching strains,the encapsulation of devices would be damaged,which causes the evaporation of water in electrolytes and results in device failure.Herein,an anti-freezing and anti-drying gel electrolyte based on polyacrylamide(PAM)and glycerol(Gly)is developed.The strong hydrogen-bonding interactions between PAM or Gly and water molecules not only avoid the crystallization of the gel electrolyte at low temperatures,but also constrain the free water and restrict its evaporation.Therefore,such gel electrolyte displays a high ionic conductivity of 9.65×10^(−5)S cm^(−1)at−40℃.Furthermore,it can restrict the dehydration process when the electrolyte is exposed to ambient environment.The flexible ZIBs based on such gel electrolyte exhibit excellent electrochemical performance at−40℃and the devices without encapsulation retain 98%of their initial capacity in ambient condition after 30 days.This work provides a route to design anti-freezing and anti-drying gel electrolytes for aqueous energy storage devices.