Fluorosilicone oil is polysiloxane with alkyl side chains containing fluorine, and because of its excellent thermal oxidation stability, cold flow property and cryogenic property, it can be widely used as a high tempe...Fluorosilicone oil is polysiloxane with alkyl side chains containing fluorine, and because of its excellent thermal oxidation stability, cold flow property and cryogenic property, it can be widely used as a high temperature lubricant in the field of military aerospace industry. Two kinds of fluorosilicone oils, FSiO-a and FSiO-b, were synthesized by different pro- cessing means. FTICR MS was used to collect the information on composition and structure of the two polymers, respec- tively. The test results show that the two fluorosilicone oils have different contents of fluorine-containing chain segments (m/ n value), the maximum distribution of m/n value of FSiO-a oil ranges from 0.22 to 0.25, and that of FSiO-b oil ranges from 0.4 to 0.67. Difference in synthesis techniques makes this discrepancy and affects the quality and thermal stability of the fluoro- silicone oils.展开更多
On August 25,2015 the CFHL technology for hydroupgrading of syncrude obtained from low-temperature Fischer-Tropsch synthesis had been successfully applied on the first in China 1.0 Mt/a indirect coal liquefaction unit.
Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sintered at 950 ℃ with AIN and SiO2-B203-ZnO-Al2O3-Li2O glass as starting materials. We characterized and...Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sintered at 950 ℃ with AIN and SiO2-B203-ZnO-Al2O3-Li2O glass as starting materials. We characterized and analyzed the variation of the microstructure, bulk density, porosity, dielectric constant, thermal conductivity and thermal expansion coefficient (TEC) of the ceramic samples as a function of AIN content. Results show that AIN and SiO2-B2O3-ZnO-Al2O3-Li2O glass can be sintered at 950 ℃, and ZnAI204 and Zn2SiO4 phase precipitated to form glass-ceramic. The performance of the ceramic samples was determined by the composition and bulk density of the composites. Lower AlN content was found redounding to liquid phase sintering, and higher bulk density of composites can be accordingly obtained. With the increase of porosity, corresponding decreases were located in the dielectric constant, thermal conductivity and TEC of the ceramic samples. When the mass fraction of AlN was 40%, the ceramic samples possessed a low dielectric constant (4.5-5.0), high thermal conductivity (11.6 W/(m.K)) and a proper TEC (3.0× 10^-6 K^-1 which matched that of silicon). The excellent performance makes this kind of low temperature co-fired ceramic a promising candidate for application in the micro-electronics packaging industry.展开更多
文摘Fluorosilicone oil is polysiloxane with alkyl side chains containing fluorine, and because of its excellent thermal oxidation stability, cold flow property and cryogenic property, it can be widely used as a high temperature lubricant in the field of military aerospace industry. Two kinds of fluorosilicone oils, FSiO-a and FSiO-b, were synthesized by different pro- cessing means. FTICR MS was used to collect the information on composition and structure of the two polymers, respec- tively. The test results show that the two fluorosilicone oils have different contents of fluorine-containing chain segments (m/ n value), the maximum distribution of m/n value of FSiO-a oil ranges from 0.22 to 0.25, and that of FSiO-b oil ranges from 0.4 to 0.67. Difference in synthesis techniques makes this discrepancy and affects the quality and thermal stability of the fluoro- silicone oils.
文摘On August 25,2015 the CFHL technology for hydroupgrading of syncrude obtained from low-temperature Fischer-Tropsch synthesis had been successfully applied on the first in China 1.0 Mt/a indirect coal liquefaction unit.
文摘Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sintered at 950 ℃ with AIN and SiO2-B203-ZnO-Al2O3-Li2O glass as starting materials. We characterized and analyzed the variation of the microstructure, bulk density, porosity, dielectric constant, thermal conductivity and thermal expansion coefficient (TEC) of the ceramic samples as a function of AIN content. Results show that AIN and SiO2-B2O3-ZnO-Al2O3-Li2O glass can be sintered at 950 ℃, and ZnAI204 and Zn2SiO4 phase precipitated to form glass-ceramic. The performance of the ceramic samples was determined by the composition and bulk density of the composites. Lower AlN content was found redounding to liquid phase sintering, and higher bulk density of composites can be accordingly obtained. With the increase of porosity, corresponding decreases were located in the dielectric constant, thermal conductivity and TEC of the ceramic samples. When the mass fraction of AlN was 40%, the ceramic samples possessed a low dielectric constant (4.5-5.0), high thermal conductivity (11.6 W/(m.K)) and a proper TEC (3.0× 10^-6 K^-1 which matched that of silicon). The excellent performance makes this kind of low temperature co-fired ceramic a promising candidate for application in the micro-electronics packaging industry.