In this study, life cycle assessment of oxygen-18 by using cryogenic distillation of oxygen is performed using SimaPro 8.3 software. Life cycle assessment is performed to understand the environmental profile and hotsp...In this study, life cycle assessment of oxygen-18 by using cryogenic distillation of oxygen is performed using SimaPro 8.3 software. Life cycle assessment is performed to understand the environmental profile and hotspots of this process in order to be used in design and development. Simulation of oxygen-18 process is executed by Hysys software, and the required inputs and outputs for inventory of life cycle were acquired. By doing life cycle assessment and considering achieved results after characterization and normalization of inventory data it has been investigated that in the majority of environmental impacts electricity consumption has a huge contribution relative to other parts of the system like liquefied oxygen production from air separation unit,required facilities for air separation and oxygen-18 units, and needed transportation. Also, among 17 impact categories investigated in ReCiPe impact assessment method, fossil depletion, climate change(human health),particulate matter formation, climate change(ecosystem), human toxicity, and metal depletion have the most contribution in entire environmental loads respectively. Furthermore, sensitivity analysis showed that changing life cycle impact assessment method from ReCiPe to IMPACT 2002+ has no significant effect on acquired results and results are confident. In addition, assumption of market for depleted oxygen from heavy isotopes which is withdrawn from top of distillation columns showed some positive effects compared to first case and environmental impacts resulted from liquefied oxygen production(feed) reduced but because of huge contribution of electricity consumption compared to other sections, this positive effect has no remarkable influence on entire environmental loads of product system.展开更多
In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of c...In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of cryogenic thermal cycles (CTC), thermal stability remains almost unchanged, while the plasticity is increased, indicating that the cryogenic thermal cyclic treatment is an effective way to improve plasticity of metallic glasses without distinctly deteriorating thermal stability. Our analysis suggests that the increase in the defect density resulted from the cryogenic thermal treatments are responsible for the plasticity increment. Variation of yield strength can be well interpreted from microstructural percolation which affected by both density and characteristic volume of the defect sites.展开更多
文摘In this study, life cycle assessment of oxygen-18 by using cryogenic distillation of oxygen is performed using SimaPro 8.3 software. Life cycle assessment is performed to understand the environmental profile and hotspots of this process in order to be used in design and development. Simulation of oxygen-18 process is executed by Hysys software, and the required inputs and outputs for inventory of life cycle were acquired. By doing life cycle assessment and considering achieved results after characterization and normalization of inventory data it has been investigated that in the majority of environmental impacts electricity consumption has a huge contribution relative to other parts of the system like liquefied oxygen production from air separation unit,required facilities for air separation and oxygen-18 units, and needed transportation. Also, among 17 impact categories investigated in ReCiPe impact assessment method, fossil depletion, climate change(human health),particulate matter formation, climate change(ecosystem), human toxicity, and metal depletion have the most contribution in entire environmental loads respectively. Furthermore, sensitivity analysis showed that changing life cycle impact assessment method from ReCiPe to IMPACT 2002+ has no significant effect on acquired results and results are confident. In addition, assumption of market for depleted oxygen from heavy isotopes which is withdrawn from top of distillation columns showed some positive effects compared to first case and environmental impacts resulted from liquefied oxygen production(feed) reduced but because of huge contribution of electricity consumption compared to other sections, this positive effect has no remarkable influence on entire environmental loads of product system.
基金supported by the National Natural Science Foundation of China(51671018,11790293,51531001,51422101,51371003,and 51671021)111 Project(B07003)+3 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKLAMM-USTB(2016Z04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Program and Fundamental Research Fund for the Central Universities(FRF-TP-15-004C1)
文摘In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of cryogenic thermal cycles (CTC), thermal stability remains almost unchanged, while the plasticity is increased, indicating that the cryogenic thermal cyclic treatment is an effective way to improve plasticity of metallic glasses without distinctly deteriorating thermal stability. Our analysis suggests that the increase in the defect density resulted from the cryogenic thermal treatments are responsible for the plasticity increment. Variation of yield strength can be well interpreted from microstructural percolation which affected by both density and characteristic volume of the defect sites.